Influence of Long-Range Interaction on Eigenvalues of Connection Matrix in One-Dimensional Ising Model

被引:0
作者
Kryzhanovsky, B., V [1 ]
Litinskii, L. B. [1 ]
机构
[1] Russian Acad Sci, Sci Res Inst Syst Anal, Moscow 117218, Russia
关键词
one-dimensional Ising model; long-range interaction; eigenvalues; spectrum density;
D O I
10.3103/S1060992X20040049
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We analyze a finite one-dimensional Ising system with periodic boundary conditions taking into account an arbitrary long-range interaction. We examine a discrete spectrum of eigenvalues of the spin connection matrix and a spectrum density of a continuous distribution obtained in the limit L -> infinity (L is the linear size of the system). We apply our results to particular cases of long-range interactions decreasing with distance.
引用
收藏
页码:293 / 296
页数:4
相关论文
共 12 条
[1]  
Baxter R. J., 1982, Exactly Solved Models in Statistical Mechanics
[2]   The Critical Behavior of the Antiferromagnetic Ising Model with Long-Range Interaction Effects [J].
Belim, S. V. ;
Larionov, I. B. .
MOSCOW UNIVERSITY PHYSICS BULLETIN, 2018, 73 (04) :394-397
[3]  
Kassan-Ogly F.A., 2014, ARXIVE14071578
[4]   Connection-Matrix Eigenvalues in the Ising Model: Taking into Account Interaction with Next-Nearest Neighbors [J].
Kryzhanovsky, B. V. ;
Litinskii, L. B. .
DOKLADY PHYSICS, 2019, 64 (11) :414-417
[5]  
Kryzhanovsky B.V., 2020, CHINESE J PHYS
[6]   Phase Transition in 2D Ising Model with Next-Neighbor Interaction [J].
Kryzhanovsky, Boris ;
Litinskii, Leonid .
8TH INTERNATIONAL CONFERENCE ON MATHEMATICAL MODELING IN PHYSICAL SCIENCE, 2019, 1391
[7]   Eigenvalues of Ising connection matrix with long-range interaction [J].
Litinskii, L. B. ;
Kryzhanovsky, B., V .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2020, 558
[8]   Critical properties of the two-dimensional Ising model on a square lattice with competing interactions [J].
Murtazaev, A. K. ;
Ramazanov, M. K. ;
Badiev, M. K. .
PHYSICA B-CONDENSED MATTER, 2015, 476 :1-5
[9]   Phase transitions in the antiferromagnetic Ising model on a body-centered cubic lattice with interactions between next-to-nearest neighbors [J].
Murtazaev, A. K. ;
Ramazanov, M. K. ;
Kassan-Ogly, F. A. ;
Kurbanova, D. R. .
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 2015, 120 (01) :110-114
[10]  
Stanley H., 1987, Introduction to phase transitions and critical phenomena, DOI DOI 10.1002/QUA.560350412