Phase-Change Memory Devices Operative at 100 °C

被引:6
|
作者
Kao, K. F. [1 ]
Chu, Y. C. [1 ]
Chen, F. T. [2 ]
Tsai, M. J. [2 ]
Chin, T. S. [3 ]
机构
[1] Natl Tsing Hua Univ, Dept Mat Sci & Engn, Hsinchu 30013, Taiwan
[2] ITRI, EOL, Hsinchu 31040, Taiwan
[3] Feng Chia Univ, Dept Mat Sci & Engn, Taichung 40724, Taiwan
关键词
Elevated-temperature operation; endurance; Ga-Te-Sb alloys; phase-change memory (PCM); thermal stability;
D O I
10.1109/LED.2010.2050190
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Phase-change memory (PCM), although promising operative at room temperature, is struggling to achieve ten-year data retention over 100 degrees C. We disclose here that a PCM device made of the composition Ga25Te8Sb67 exhibits normal operation at 100 degrees C for an endurance of at least 3 x 10(5) cycles. At room temperature, the endurance is at least 5 x 10(6) cycles. The set-reset speed of the devices reaches 20 ns, and the reset current is around 20% less than that of our reference test cells made of the benchmark Ge2Sb2Te5
引用
收藏
页码:872 / 874
页数:3
相关论文
共 50 条
  • [21] Fabrication and integration of photonic devices for phase-change memory and neuromorphic computing
    Wen Zhou
    Xueyang Shen
    Xiaolong Yang
    Jiangjing Wang
    Wei Zhang
    International Journal of Extreme Manufacturing, 2024, 6 (02) : 6 - 32
  • [22] Bilayer heater electrode for improving reliability of phase-change memory devices
    Lee, Seung-Yun
    Park, Young Sam
    Yoon, Sung-Min
    Jung, Soon-Won
    Yu, Byoung-Gon
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2008, 155 (05) : H314 - H318
  • [23] A Finite-Element Thermoelectric model for Phase-Change Memory devices
    Athmanathan, Aravinthan
    Krebs, Daniel
    Sebastian, Abu
    Le Gallo, Manuel
    Pozidis, Haralampos
    Eleftheriou, Evangelos
    2015 INTERNATIONAL CONFERENCE ON SIMULATION OF SEMICONDUCTOR PROCESSES AND DEVICES (SISPAD), 2015, : 289 - 292
  • [24] Fabrication and integration of photonic devices for phase-change memory and neuromorphic computing
    Zhou, Wen
    Shen, Xueyang
    Yang, Xiaolong
    Wang, Jiangjing
    Zhang, Wei
    INTERNATIONAL JOURNAL OF EXTREME MANUFACTURING, 2024, 6 (02)
  • [25] Unified mechanisms for structural relaxation and crystallization in phase-change memory devices
    Ielmini, D.
    Boniardi, M.
    Lacaita, A. L.
    Redaelli, A.
    Pirovano, A.
    MICROELECTRONIC ENGINEERING, 2009, 86 (7-9) : 1942 - 1945
  • [26] Two generations of phase-change memory devices: Differences and common problems
    Popov, Anatoly
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2009, 246 (08): : 1837 - 1840
  • [27] Operation dynamics in phase-change memory cells and the role of access devices
    Faraclas, A.
    Williams, N.
    Dirisaglik, F.
    Cil, K.
    Gokirmak, A.
    Silva, H.
    2012 IEEE COMPUTER SOCIETY ANNUAL SYMPOSIUM ON VLSI (ISVLSI), 2012, : 78 - 83
  • [28] Voltage-controlled relaxation oscillations in phase-change memory devices
    Ielmini, Daniele
    Mantegazza, Davide
    Lacaita, Andrea L.
    IEEE ELECTRON DEVICE LETTERS, 2008, 29 (06) : 568 - 570
  • [29] Fabrication and Evaluation of Nanopillar-Shaped Phase-Change Memory Devices
    Hong, Sung-Hoon
    Shin, Ju-Hyeon
    Bae, Byeong-Ju
    Lee, Heon
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2011, 50 (03)
  • [30] Phase-change memory materials
    Kraft, Arno
    CHEMISTRY & INDUSTRY, 2022, 86 (01) : 43 - 43