Dynamics of correlations of Bose and Fermi particles

被引:6
作者
Gerasimenko, V. I. [2 ]
Polishchuk, D. O. [1 ]
机构
[1] Taras Shevchenko Natl Univ Kyiv, Dept Mech & Math, UA-03187 Kiev, Ukraine
[2] NAS Ukraine, Inst Math, UA-01601 Kiev 4, Ukraine
关键词
von Neumann hierarchy; Fermi-Dirac and Bose-Einstein statistics; correlation operator; density matrix; marginal operators; quantum many-particle system; MEAN-FIELD-LIMIT; BOLTZMANN-EQUATION; DERIVATION;
D O I
10.1002/mma.1336
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We discuss the origin of the microscopic description of correlations in quantum many-particle systems obeying Fermi-Dirac and Bose-Einstein statistics. For correlation operators that give the alternative description of the quantum state evolution of Bose and Fermi particles, we deduce the von Neumann hierarchy of nonlinear equations and construct the solution of its initial-value problem in the corresponding spaces of sequences of trace class operators. The links of constructed solution both with the solution of the quantum BBGKY hierarchy and with the nonlinear BBGKY hierarchy for marginal correlation operators are discussed. The solutions of the Cauchy problems of these hierarchies are constructed, in particular for initial data satisfying a chaos property. Copyright (C) 2010 John Wiley & Sons, Ltd.
引用
收藏
页码:76 / 93
页数:18
相关论文
共 33 条
[11]  
Cohen EGD., 2009, UKRAIN J PHYS, V54, P847
[12]  
Dautray R., 1992, MATH ANAL NUMERICAL
[13]   On the quantum Boltzmann equation [J].
Erdös, L ;
Salmhofer, M ;
Yau, HT .
JOURNAL OF STATISTICAL PHYSICS, 2004, 116 (1-4) :367-380
[14]   Derivation of the cubic non-linear Schrodinger equation from quantum dynamics of many-body systems [J].
Erdos, Laszlo ;
Schlein, Benjamin ;
Yau, Horng-Tzer .
INVENTIONES MATHEMATICAE, 2007, 167 (03) :515-614
[15]   Derivation of the Gross-Pitaevskii hierarchy for the dynamics of Bose-Einstein condensate [J].
Erdos, Laszlo ;
Schlein, Benjamin ;
Yau, Horng-Tzer .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2006, 59 (12) :1659-1741
[16]   Mean-field- and classical limit of many-body Schrodinger dynamics for bosons [J].
Froehlich, Jierg ;
Graffi, Sandro ;
Schwarz, Simon .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2007, 271 (03) :681-697
[17]   Evolution of correlations of quantum many-particle systems [J].
Gerasimenko, V. I. ;
Shtyk, V. O. .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2008,
[18]  
Gerasimenko VI, 2009, UKR J PHYS, V54, P834
[19]  
Gerasimenko V. I., 2006, UKR MATH J, V58, P1175
[20]  
GINIBRE J, 1971, STAT MECH QUANTUM FI, P329