LYZ ellipsoid and Petty projection body for log-concave functions

被引:24
作者
Fang, Niufa [1 ,2 ]
Zhou, Jiazu [1 ,3 ]
机构
[1] Southwest Univ, Sch Math & Stat, Chongqing 400715, Peoples R China
[2] Nankai Univ, Chern Inst Math, Tianjin 300071, Peoples R China
[3] Wuhan Univ Sci & Technol, Coll Sci, Wuhan 430081, Hubei, Peoples R China
关键词
LYZ ellipsoid; Petty projection body; log-concave function; The first variation; Valuation; BRUNN-MINKOWSKI; AFFINE; INEQUALITY; VALUATIONS; DIVERGENCE; STABILITY; BODIES; FORMS;
D O I
10.1016/j.aim.2018.10.029
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aims of this paper are to develop the LYZ ellipsoid and Petty projection body for log-concave functions, which correspond to the LYZ ellipsoid and Petty projection body for convex bodies when restricted to the subclass of characteristic functions. Moreover, the continuous, SL(n) contravariant valuation on a subclass of log-concave functions is classified. (C) 2018 Published by Elsevier Inc.
引用
收藏
页码:914 / 959
页数:46
相关论文
共 75 条
[1]   John's Ellipsoid and the Integral Ratio of a Log-Concave Function [J].
Alonso-Gutierrez, David ;
Gonzalez Merino, Bernardo ;
Hugo Jimenez, C. ;
Villa, Rafael .
JOURNAL OF GEOMETRIC ANALYSIS, 2018, 28 (02) :1182-1201
[2]   Rogers-Shephard inequality for log-concave functions [J].
Alonso-Gutierrez, David ;
Merino, Bernardo Gonzalez ;
Hugo Jimenez, C. ;
Villa, Rafael .
JOURNAL OF FUNCTIONAL ANALYSIS, 2016, 271 (11) :3269-3299
[3]   The Santalo point of a function, and a functional form of the Santalo inequality [J].
Artstein-Avidan, S ;
Klartag, B ;
Milman, V .
MATHEMATIKA, 2004, 51 (101-02) :33-48
[4]   Functional affine-isoperimetry and an inverse logarithmic Sobolev inequality [J].
Artstein-Avidan, S. ;
Klartag, B. ;
Schuett, C. ;
Werner, E. .
JOURNAL OF FUNCTIONAL ANALYSIS, 2012, 262 (09) :4181-4204
[5]   The concept of duality in convex analysis, and the characterization of the Legendre transform [J].
Artstein-Avidan, Shiri ;
Milman, Vitali .
ANNALS OF MATHEMATICS, 2009, 169 (02) :661-674
[6]  
Artstein-Avidan S, 2015, P AM MATH SOC, V143, P1693
[7]   LOGARITHMICALLY CONCAVE FUNCTIONS AND SECTIONS OF CONVEX-SETS IN RN [J].
BALL, K .
STUDIA MATHEMATICA, 1988, 88 (01) :69-84
[8]  
BALL K, 1991, J LOND MATH SOC, V44, P351
[9]  
Ball K., 1986, THESIS
[10]   Stability of Polya-Szego inequality for log-concave functions [J].
Barchiesi, M. ;
Capriani, G. M. ;
Fusco, N. ;
Pisante, G. .
JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 267 (07) :2264-2297