Binder-free NaTi2(PO4)3 anodes for high-performance coaxial-fiber aqueous rechargeable sodium-ion batteries

被引:86
作者
Zhang, Qichong [1 ]
Man, Ping [5 ]
He, Bing [5 ]
Li, Chaowei [5 ]
Li, Qiulong [2 ]
Pan, Zhenghui [5 ]
Wang, Zhixun [1 ]
Yang, Jiao [1 ]
Wang, Zhe [1 ]
Zhou, Zhenyu [5 ]
Lu, Xihong [4 ]
Niu, Zhiqiang [3 ]
Yao, Yagang [2 ]
Wei, Lei [1 ]
机构
[1] Nanyang Technol Univ, Sch Elect & Elect Engn, 50 Nanyang Ave, Singapore 639798, Singapore
[2] Nanjing Univ, Collaborat Innovat Ctr Adv Microstruct, Coll Engn & Appl Sci, Natl Lab Solid State Microstruct, Nanjing 210093, Jiangsu, Peoples R China
[3] Nankai Univ, Coll Chem, Renewable Energy Convers & Storage Ctr, Key Lab Adv Energy Mat Chem,Minist Educ, Tianjin 300071, Peoples R China
[4] Sun Yat Sen Univ, Sch Chem, KLGHEI Environm & Energy Chem, MOE Key Lab Bioinorgan & Synthet Chem, Guangzhou 510275, Guangdong, Peoples R China
[5] Chinese Acad Sci, Suzhou Inst Nanotech & Nanobion, Joint Key Lab Funct Nanomat & Devices, Div Adv Nanomat,Key Lab Nanodevices & Applicat, Suzhou 215123, Peoples R China
基金
中国国家自然科学基金;
关键词
NaTi2(PO4)(3); Binder-free electrodes; Carbon nanotube fibers; Coaxial-architectures; Aqueous sodium-ion batteries; ELECTRODE MATERIALS; NANOWIRE ARRAYS; CATHODE; SUPERCAPACITORS; NANOSHEETS;
D O I
10.1016/j.nanoen.2019.104212
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Sodium superionic conductors-structured NaTi2(PO4)(3) (NTP) is a significant anode material for high-energy-density aqueous rechargeable sodium-ion batteries (ARSIB) as result of its high capacity, abundant sources and suitable negative voltage plateau. Conventional synthesis of NTP with inevitable high-temperature treatment and subsequent slurry-casting procedure commonly lead to complicated high-cost process and reduced active sites. Thus, it is highly desirable yet significantly challenging to fabricate self-standing NTP-based electrodes. Herein, a simple solvothermal synthesis strategy is demonstrated to fabricate novel binder-free NTP-based electrodes without the need for any further post-synthesis treatment. As a proof-of-concept for applications, we successfully assemble a high-voltage coaxial-fiber ARSIB (CFARSIB). Taking advantages of the unique coaxial architecture and the synergy of novel electrode materials, the resulting CFARSIB exhibits a high capacity of 37.84 mAh cm(-3) and an impressive energy density of 57.66 mWh cm(-3). This work provides innovative insights and new possibilities to design binder-free NTP materials and will accelerate the development of high-performance wearable SIBs.
引用
收藏
页数:8
相关论文
共 58 条
[1]   Progress in Aqueous Rechargeable Sodium-Ion Batteries [J].
Bin, Duan ;
Wang, Fei ;
Tamirat, Andebet Gedamu ;
Suo, Liumin ;
Wang, Yonggang ;
Wang, Chunsheng ;
Xia, Yongyao .
ADVANCED ENERGY MATERIALS, 2018, 8 (17)
[2]   C-Plasma of Hierarchical Graphene Survives SnS Bundles for Ultrastable and High Volumetric Na-Ion Storage [J].
Chao, Dongliang ;
Ouyang, Bo ;
Liang, Pei ;
Tran Thi Thu Huong ;
Jia, Guichong ;
Huang, Hui ;
Xia, Xinhui ;
Rawat, Rajdeep Singh ;
Fan, Hong Jin .
ADVANCED MATERIALS, 2018, 30 (49)
[3]   Water-mediated cation intercalation of open-framework indium hexacyanoferrate with high voltage and fast kinetics [J].
Chen, Liang ;
Shao, Hezhu ;
Zhou, Xufeng ;
Liu, Guoqiang ;
Jiang, Jun ;
Liu, Zhaoping .
NATURE COMMUNICATIONS, 2016, 7
[4]   Challenges and Perspectives for NASICON-Type Electrode Materials for Advanced Sodium-Ion Batteries [J].
Chen, Shuangqiang ;
Wu, Chao ;
Shen, Laifa ;
Zhu, Changbao ;
Huang, Yuanye ;
Xi, Kai ;
Maier, Joachim ;
Yu, Yan .
ADVANCED MATERIALS, 2017, 29 (48)
[5]   Multicomponent Hierarchical Cu-Doped NiCo-LDH/CuO Double Arrays for Ultralong-Life Hybrid Fiber Supercapacitor [J].
Guo, Yaqing ;
Hong, Xufeng ;
Wang, Yao ;
Li, Qi ;
Meng, Jiashen ;
Dai, Runtao ;
Liu, Xiong ;
He, Liang ;
Mai, Liqiang .
ADVANCED FUNCTIONAL MATERIALS, 2019, 29 (24)
[6]   Multi-functional Flexible Aqueous Sodium-Ion Batteries with High Safety [J].
Guo, Zhaowei ;
Zhao, Yang ;
Ding, Yuxue ;
Dong, Xiaoli ;
Chen, Long ;
Cao, Jingyu ;
Wang, Changchun ;
Xia, Yongyao ;
Peng, Huisheng ;
Wang, Yonggang .
CHEM, 2017, 3 (02) :348-362
[7]   Self-sacrificed synthesis of conductive vanadium-based Metal-Organic framework nanowire-bundle arrays as binder-free cathodes for high-rate and high-energy-density wearable Zn-Ion batteries [J].
He, Bing ;
Zhang, Qichong ;
Man, Ping ;
Zhou, Zhenyu ;
Li, Chaowei ;
Li, Qiulong ;
Xie, Liyan ;
Wang, Xiaona ;
Pang, Huan ;
Yao, Yagang .
NANO ENERGY, 2019, 64
[8]   Sodium Ion Stabilized Vanadium Oxide Nanowire Cathode for High-Performance Zinc-Ion Batteries [J].
He, Pan ;
Zhang, Guobin ;
Liao, Xiaobin ;
Yan, Mengyu ;
Xu, Xu ;
An, Qinyou ;
Liu, Jun ;
Mai, Liqiang .
ADVANCED ENERGY MATERIALS, 2018, 8 (10)
[9]   Layered VS2 Nanosheet-Based Aqueous Zn Ion Battery Cathode [J].
He, Pan ;
Yan, Mengyu ;
Zhang, Guobin ;
Sun, Ruimin ;
Chen, Lineng ;
An, Qinyou ;
Mai, Liqiang .
ADVANCED ENERGY MATERIALS, 2017, 7 (11)
[10]   Advances and Challenges in Metal Sulfides/Selenides for Next-Generation Rechargeable Sodium-Ion Batteries [J].
Hu, Zhe ;
Liu, Qiannan ;
Chou, Shu-Lei ;
Dou, Shi-Xue .
ADVANCED MATERIALS, 2017, 29 (48)