Boundedness of solutions for asymmetric Duffing equations

被引:0
作者
Mi, Lufang [1 ]
Zhang, Pingping [1 ]
Xu, Huazhong [1 ]
机构
[1] Binzhou Univ, Dept Math & Informat Sci, Binzhou 256603, Shandong, Peoples R China
关键词
Quasiperiodic solution; Duffing equation; Moser's small twist theorem; Boundedness; EXISTENCE;
D O I
10.1016/j.amc.2010.08.042
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we are concerned with the boundedness of all the solutions and the existence of quasiperiodic solutions for some Duffing equations x g(x) = e(t), where e(t) is of period 1, and g : R -> R possesses the characters: g(x) is superlinear when x >= d(0), d(0) is a positive constant and g(x) is semilinear when x <= 0. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:3102 / 3112
页数:11
相关论文
共 17 条
  • [1] Arnold V. I., 1978, Mathematical methods of classical mechanics
  • [2] Invariant tori of the duffing equation
    Bibikov, Yu. N.
    Pirogov, M. V.
    [J]. DIFFERENTIAL EQUATIONS, 2006, 42 (08) : 1069 - 1075
  • [3] The existence of anti-periodic solutions for high order Duffing equation
    Chen T.
    Liu W.
    Zhang J.
    [J]. J. Appl. Math. Comp., 2008, 1-2 (271-280): : 271 - 280
  • [4] Dieckerhoff R., 1987, Ann. Della Scuola Normale Superiore di Pisa-Classe di Scienze, V14, P79
  • [5] Schauder fixed point theorem based existence of periodic solution for the response of Duffing's oscillator
    Dizaji, Ahmad Feyz
    Sepiani, Hossein Ali
    Ebrahimi, Farzad
    Allahverdizadeh, Akbar
    Sepiani, Hasan Ali
    [J]. JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2009, 23 (08) : 2299 - 2307
  • [6] QUASI-PERIODIC MOTIONS IN SUPERQUADRATIC TIME-PERIODIC POTENTIALS
    LEVI, M
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1991, 143 (01) : 43 - 83
  • [7] LITTLEWOOD J, 1968, SOME PROBLEM REAL CO
  • [8] Boundedness of solutions for semilinear Duffing equations
    Liu, B
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 1998, 145 (01) : 119 - 144
  • [9] MATHER J, 1988, COMMENT MATH HELV, V60, P151
  • [10] [Mi Lufang 弭鲁芳], 2004, [数学进展, Advances in Mathematics], V33, P477