InsClustering: Instantly Clustering LiDAR Range Measures for Autonomous Vehicle

被引:3
作者
Li, You [1 ]
Le Bihan, Clement [2 ]
Pourtau, Txomin [2 ]
Ristorcelli, Thomas [2 ]
Ibanez-Guzman, Javier [1 ]
机构
[1] RENAULT SAS, Res Dept, 1 Ave Golf, F-78280 Guyancourt, France
[2] Magellium SAS, Parc Technol Canal,24 Rue Herms, F-31521 Ramonville Saint Agne, France
来源
2020 IEEE 23RD INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC) | 2020年
关键词
D O I
10.1109/itsc45102.2020.9294467
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
LiDARs are usually more accurate than cameras in distance measuring. Hence, there is strong interest to apply LiDARs in autonomous driving. Different existing approaches process the rich 3D point clouds for object detection, tracking and recognition. These methods generally require two initial steps: (1) filter points on the ground plane and (2) cluster non-ground points into objects. This paper proposes a field-tested fast 3D point cloud segmentation method for these two steps. Our specially designed algorithms allow instantly process raw LiDAR data packets, which significantly reduce the processing delay. In our tests on Velodyne UltraPuck, a 32 layers spinning LiDAR, the processing delay of clustering all the 360 degrees LiDAR measures is less than 1ms. Meanwhile, a coarse-to-fine scheme is applied to ensure the clustering quality. Our field experiments in public roads have shown that the proposed method significantly improves the speed of 3D point cloud clustering whilst maintains good accuracy.
引用
收藏
页数:6
相关论文
共 18 条
[1]  
[Anonymous], 2008, P 1 INT WORKSH COGN
[2]  
Bogoslavskyi I, 2016, 2016 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS 2016), P163, DOI 10.1109/IROS.2016.7759050
[3]  
Capellier E., 2018, 2018 21 INT C INT TR
[4]  
Capellier E, 2019, IEEE INT VEH SYM, P1304, DOI [10.1109/ivs.2019.8813846, 10.1109/IVS.2019.8813846]
[5]  
Douillard B, 2011, IEEE INT CONF ROBOT
[6]  
Jia WC, 2007, LASER SURG MED, P2
[7]   A Perception-Driven Autonomous Urban Vehicle [J].
Leonard, John ;
How, Jonathan ;
Teller, Seth ;
Berger, Mitch ;
Campbell, Stefan ;
Fiore, Gaston ;
Fletcher, Luke ;
Frazzoli, Emilio ;
Huang, Albert ;
Karaman, Sertac ;
Koch, Olivier ;
Kuwata, Yoshiaki ;
Moore, David ;
Olson, Edwin ;
Peters, Steve ;
Teo, Justin ;
Truax, Robert ;
Walter, Matthew ;
Barrett, David ;
Epstein, Alexander ;
Maheloni, Keoni ;
Moyer, Katy ;
Jones, Troy ;
Buckley, Ryan ;
Antone, Matthew ;
Galejs, Robert ;
Krishnamurthy, Siddhartha ;
Williams, Jonathan .
JOURNAL OF FIELD ROBOTICS, 2008, 25 (10) :727-774
[8]   Lidar for Autonomous Driving: The Principles, Challenges, and Trends for Automotive Lidar and Perception Systems [J].
Li, You ;
Ibanez-Guzman, Javier .
IEEE SIGNAL PROCESSING MAGAZINE, 2020, 37 (04) :50-61
[9]   Multiframe-Based High Dynamic Range Monocular Vision System for Advanced Driver Assistance Systems [J].
Li, You ;
Qiao, Yongliang ;
Ruichek, Yassine .
IEEE SENSORS JOURNAL, 2015, 15 (10) :5433-5441
[10]   Paschen's law studies in cold gases [J].
Massarczyk, R. ;
Chu, P. ;
Dugger, C. ;
Elliott, S. R. ;
Rielage, K. ;
Xu, W. .
JOURNAL OF INSTRUMENTATION, 2017, 12