On the spectrum and numerical range of tridiagonal random operators

被引:6
作者
Hagger, Raffael [1 ,2 ]
机构
[1] Hamburg Univ Technol, Inst Math, Schwarzenbergstr 95 E, D-21073 Hamburg, Germany
[2] Leibniz Univ Hannover, Inst Anal, Welfengarten 1, D-30167 Hannover, Germany
关键词
Random operator; spectrum; numerical range; tridiagonal; pseudo-ergodic; MATRICES;
D O I
10.4171/JST/124
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we derive an explicit formula for the numerical range of (non-self-adjoint) tridiagonal random operators. As a corollary we obtain that the numerical range of such an operator is always the convex hull of its spectrum, this (surprisingly) holding whether or not the random operator is normal. Furthermore, we introduce a method to compute numerical ranges of (not necessarily random) tridiagonal operators that is based on the Schur test. In a somewhat combinatorial approach we use this method to compute the numerical range of the square of the (generalized) Feinberg-Zee random hopping matrix to obtain an improved upper bound to the spectrum. In particular, we show that the spectrum of the Feinberg-Zee random hopping matrix is not convex.
引用
收藏
页码:215 / 266
页数:52
相关论文
共 24 条
[1]   ABSENCE OF DIFFUSION IN CERTAIN RANDOM LATTICES [J].
ANDERSON, PW .
PHYSICAL REVIEW, 1958, 109 (05) :1492-1505
[2]   Spectrum of a Feinberg-Zee random hopping matrix [J].
Chandler-Wilde, Simon N. ;
Davies, E. Brian .
JOURNAL OF SPECTRAL THEORY, 2012, 2 (02) :147-179
[3]   ON THE SPECTRA AND PSEUDOSPECTRA OF A CLASS OF NON-SELF-ADJOINT RANDOM MATRICES AND OPERATORS [J].
Chandler-Wilde, Simon N. ;
Chonchaiya, Ratchanikorn ;
Lindner, Marko .
OPERATORS AND MATRICES, 2013, 7 (04) :739-775
[4]   EIGENVALUE PROBLEM MEETS SIERPINSKI TRIANGLE: COMPUTING THE SPECTRUM OF A NON-SELF-ADJOINT RANDOM OPERATOR [J].
Chandler-Wilde, Simon N. ;
Chonchaiya, Ratchanikorn ;
Lindner, Marko .
OPERATORS AND MATRICES, 2011, 5 (04) :633-648
[5]   Limit Operators, Collective Compactness, and the Spectral Theory of Infinite Matrices [J].
Chandler-Wilde, Simon N. ;
Lindner, Marko .
MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 210 (989) :1-+
[6]  
Davies E. B., 2007, CAMBRIDGE STUDIES AD, V106
[7]  
Davies E. B., 2005, LMS J. Comput. Math., V8, P17
[8]   Spectral theory of pseudo-ergodic operators [J].
Davies, EB .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2001, 216 (03) :687-704
[9]   Spectral curves of non-hermitian hamiltonians [J].
Feinberg, J ;
Zee, A .
NUCLEAR PHYSICS B, 1999, 552 (03) :599-623
[10]  
Hagen R., 2001, MONOGRAPHS TXB PURE, V236