Thermoelectric properties of TcX2(X=S, Se, Te)

被引:6
作者
Jiang, X.
Zhu, L. [1 ]
Yao, K. L.
机构
[1] Huazhong Univ Sci & Technol, Sch Phys, Wuhan 430074, Peoples R China
基金
中国国家自然科学基金;
关键词
Thermoelectric properties; Density functional theory; Boltzmann transport; Seebeck coefficients; Power factor; TcX2(X=S; Se; Te); INITIO MOLECULAR-DYNAMICS; TOTAL-ENERGY CALCULATIONS;
D O I
10.1016/j.jallcom.2018.06.119
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We have studied the thermoelectric properties of TcX2 (X = S, Se, Te) by combined first-principles density functional theory with Boltzmann transport approach. The results show that TcS2 and TcSe2 have high Seebeck coefficients within a reasonable doping level, and their Seebeck coefficients are all at the magnitude of 10(-4) V/K, however, the Seebeck coefficients of TcTe2 are always smaller than 2 x 10(-4) V/K. The peak of Seebeck coefficient is uplifted as doping level decreases. The power factors have a promising value and can be greatly enhanced by p-type doping along all direction of TcS2, along x-direction of TcSe2, and along x- and y-direction of TcTe2, while by n-type doping for other directions. It finds that when the doping level is 1 x 10(19) cm(-3) the peak of power factor appears along z-direction of TcS2 and x-direction of TcSe2, and when the doping level reaches 1 x 10(29) cm(-3) the power factors along x- and y-direction of TcS2 and x-direction of TcSe2 reach its peak, meanwhile, the peaks of power factor along the x- and y-direction of TcTe2 occur when the doping level is 1 x 10(21) cm(-3). These results mean that we can optimize the Seebeck coefficients and power factor by proper doping, and TcX2 (X = S, Se, Te) is candidate for thermoelectric application. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:505 / 511
页数:7
相关论文
共 35 条
[1]   Structural, electronic and optical properties of TcX2 (X = S, Se, Te) from first principles calculations [J].
Abdulsalam, Mahmud ;
Joubert, Daniel .
COMPUTATIONAL MATERIALS SCIENCE, 2016, 115 :177-183
[2]   DEFORMATION POTENTIALS AND MOBILITIES IN NON-POLAR CRYSTALS [J].
BARDEEN, J ;
SHOCKLEY, W .
PHYSICAL REVIEW, 1950, 80 (01) :72-80
[3]   Exchange-hole dipole moment and the ospersion interaction [J].
Becke, AD ;
Johnson, ER .
JOURNAL OF CHEMICAL PHYSICS, 2005, 122 (15)
[4]   Thermoelectric performance of half-Heusler compounds MYSb (M = Ni, Pd, Pt) [J].
Ding, Guangqian ;
Gao, G. Y. ;
Yao, K. L. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2014, 47 (38)
[5]  
Ding Y H, 2016, Biosurf Biotribol, V2, P121, DOI 10.1016/j.bsbt.2016.11.001
[6]   Van der Waals density functional for general geometries -: art. no. 246401 [J].
Dion, M ;
Rydberg, H ;
Schröder, E ;
Langreth, DC ;
Lundqvist, BI .
PHYSICAL REVIEW LETTERS, 2004, 92 (24) :246401-1
[7]   Hydrogen bonding and stacking interactions of nucleic acid base pairs: A density-functional-theory based treatment [J].
Elstner, M ;
Hobza, P ;
Frauenheim, T ;
Suhai, S ;
Kaxiras, E .
JOURNAL OF CHEMICAL PHYSICS, 2001, 114 (12) :5149-5155
[8]   Assessment of the Perdew-Burke-Ernzerhof exchange-correlation functional [J].
Ernzerhof, M ;
Scuseria, GE .
JOURNAL OF CHEMICAL PHYSICS, 1999, 110 (11) :5029-5036
[9]   First-principles study of thermoelectric transport properties of monolayer gallium chalcogenides [J].
Ge, Xu-Jin ;
Qin, Dan ;
Yao, Kai-Lun ;
Lu, Jing-Tao .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2017, 50 (40)
[10]   ABINIT: First-principles approach to material and nanosystem properties [J].
Gonze, X. ;
Amadon, B. ;
Anglade, P. -M. ;
Beuken, J. -M. ;
Bottin, F. ;
Boulanger, P. ;
Bruneval, F. ;
Caliste, D. ;
Caracas, R. ;
Cote, M. ;
Deutsch, T. ;
Genovese, L. ;
Ghosez, Ph. ;
Giantomassi, M. ;
Goedecker, S. ;
Hamann, D. R. ;
Hermet, P. ;
Jollet, F. ;
Jomard, G. ;
Leroux, S. ;
Mancini, M. ;
Mazevet, S. ;
Oliveira, M. J. T. ;
Onida, G. ;
Pouillon, Y. ;
Rangel, T. ;
Rignanese, G. -M. ;
Sangalli, D. ;
Shaltaf, R. ;
Torrent, M. ;
Verstraete, M. J. ;
Zerah, G. ;
Zwanziger, J. W. .
COMPUTER PHYSICS COMMUNICATIONS, 2009, 180 (12) :2582-2615