Influence of fractional time order on W-shaped and Modulation Instability gain in fractional Nonlinear Schrodinger Equation

被引:15
|
作者
Houwe, Alphonse [1 ,2 ]
Abbagari, Souleymanou [3 ]
Nisar, Kottakkaran Sooppy [4 ]
Inc, Mustafa [5 ,6 ,7 ]
Doka, Serge Y. [8 ]
机构
[1] Univ Maroua, Dept Phys, Fac Sci, POB 814, Maroua, Cameroon
[2] Limbe Naut Arts & Fisheries Inst, Dept Marine Engn, POB 485, Limbe, Cameroon
[3] Univ Maroua, Fac Mines & Petr Ind, Dept Basic Sci, POB 08, Maroua, Cameroon
[4] Prince Sattam Bin Abdulaziz Univ, Dept Math, Wadi Aldawaser 11991, Saudi Arabia
[5] Biruni Univ, Dept Comp Engn, Istanbul, Turkey
[6] Firat Univ, Fac Sci, Dept Math, TR-23119 Elazig, Turkey
[7] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung, Taiwan
[8] Univ Ngaoundere, Dept Phys, Fac Sci, Ngaoundere, Cameroon
关键词
Fractional Nonlinear Schrbdinger Equation; W-shaped profile; Modulation Instability; ZAKHAROV-KUZNETSOV EQUATION; OPTICAL SOLITONS; WAVE SOLUTIONS; STABILITY;
D O I
10.1016/j.rinp.2021.104556
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, we study the influence of fractional time derivative on W-shaped profile and Modulation Instability gain in fractional Nonlinear Schrodinger Equation (NLSE) which could be used to describe the propagation of pulses in random media, optical metamaterials and others nonlinear systems. We first imply the auxiliary equation method to set up bright, dark and W-shape optical solitons solutions under certain conditions. Thereafter, we graphically depict the obtained results which deeply show the potency of the fractional parameter order on the width and shape of the solitons. We then study the Modulation Instability (MI) gain spectra and we end up remarking that the MI gain sidebands and the MI gain shapes are mainly influenced by the fractional time derivative parameter compared to the previous works reported in nonlinear optic fibers (Wyller et al., 2002; Zhanga et al., 2017).
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Brownian motion effects on W-shaped soliton and modulation instability gain of the (2+1)-dimensional nonlinear schrodinger equation
    Abbagari, Souleymanou
    Nyawo, Pelerine Tsogni
    Houwe, Alphonse
    Inc, Mustafa
    OPTICAL AND QUANTUM ELECTRONICS, 2022, 54 (01)
  • [2] W-shaped profile and breather-like soliton of the fractional nonlinear Schrodinger equation describing the polarization mode in optical fibers
    Houwe, Alphonse
    Abbagari, Souleymanou
    Djorwe, Philippe
    Saliou, Youssoufa
    Doka, Serge Y.
    Inc, Mustafa
    OPTICAL AND QUANTUM ELECTRONICS, 2022, 54 (08)
  • [3] The M-fractional improved perturbed nonlinear Schrodinger equation: Optical solitons and modulation instability analysis
    Khalil, Eied M.
    Sulaiman, T. A.
    Yusuf, Abdullahi
    Inc, Mustafa
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2021, 35 (08):
  • [4] Nonlinear Stage of Modulation Instability for a Fifth-Order Nonlinear Schrodinger Equation
    Jia, Hui-Xian
    Shan, Dong-Ming
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2017, 72 (11): : 1071 - 1075
  • [5] Bubbles and W-shaped solitons in Kerr media with fractional diffraction
    Zeng, Liangwei
    Malomed, Boris A.
    Mihalache, Dumitru
    Cai, Yi
    Lu, Xiaowei
    Zhu, Qifan
    Li, Jingzhen
    NONLINEAR DYNAMICS, 2021, 104 (04) : 4253 - 4264
  • [6] Modulation instability in fractional Schrodinger equation with cubic-quintic nonlinearity
    Zhang, Jinggui
    JOURNAL OF NONLINEAR OPTICAL PHYSICS & MATERIALS, 2022, 31 (04)
  • [7] Breather-like soliton, M-shaped profile, W-shaped profile, and modulation instability conducted by self-frequency shift of the nonlinear Schrodinger equation
    Houwe, Alphonse
    Inc, Mustafa
    Doka, Serge Yamigno
    JOURNAL OF COMPUTATIONAL ELECTRONICS, 2022, 21 (04) : 733 - 743
  • [8] W-shaped profile and multiple optical soliton structure of the coupled nonlinear Schrodinger equation with the four-wave mixing term and modulation instability spectrum
    Abbagari, Souleymanou
    Houwe, Alphonse
    Doka, Serge Y.
    Bouetou, Thomas B.
    Inc, Mustafa
    Crepin, Kofane T.
    PHYSICS LETTERS A, 2021, 418
  • [9] The fractional discrete nonlinear Schrodinger equation
    Molina, Mario, I
    PHYSICS LETTERS A, 2020, 384 (08)
  • [10] On instability of standing waves for the mass-supercritical fractional nonlinear Schrodinger equation
    Van Duong Dinh
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2019, 70 (02):