Multivariate Haar systems in Besov function spaces

被引:1
作者
Oswald, P. [1 ]
机构
[1] Univ Bonn, Inst Numer Simulat, Bonn, Germany
关键词
Haar system; Besov spaces; Schauder bases in quasi-Banach spaces; unconditional convergence; piecewise-constant approximation; CLASSICAL FUNCTION-SPACES; SPLINE BASES; UNCONDITIONAL CONVERGENCE; APPROXIMATION;
D O I
10.1070/SM9398
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We determine all cases for which the d-dimensional Haar wavelet system H-d on the unit cube I-d is a conditional or unconditional Schauder basis in the classical isotropic Besov function spaces B-p,q,1(s)(I-d), 0 < p, q < infinity, 0 <= s < 1/p, defined in terms of first-order L-p-moduli of smoothness. We obtain similar results for the tensor-product Haar system <(H)over tilde>(d), and characterize the parameter range for which the dual of B-p,q,1(s) (I-d) is trivial for 0 < p < 1.
引用
收藏
页码:810 / 842
页数:33
相关论文
共 50 条
[41]   Matrix-weighted Besov spaces [J].
Roudenko, S .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 355 (01) :273-314
[42]   OPTIMAL EMBEDDINGS OF GENERALIZED BESOV SPACES [J].
Bashir, Zia ;
Karadzhov, Georgi E. .
COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES, 2010, 63 (06) :799-806
[43]   BESOV-SPACES AND THE MULTIFRACTAL HYPOTHESIS [J].
EYINK, GL .
JOURNAL OF STATISTICAL PHYSICS, 1995, 78 (1-2) :353-375
[44]   GAGLIARDO-NIRENBERG AND SOBOLEV INTERPOLATION INEQUALITIES ON BESOV SPACES [J].
Nguyen Anh Dao ;
Nguyen Lam ;
Lu, Guozhen .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, 150 (02) :605-616
[45]   Pseudodifferential operators on localized Besov spaces [J].
Moussai M. ;
Allaoui S.E. .
Acta Mathematica Vietnamica, 2013, 38 (2) :255-278
[46]   Decomposition systems for function spaces [J].
Kyriazis, G .
STUDIA MATHEMATICA, 2003, 157 (02) :133-169
[47]   Best polynomial approximation in Besov spaces [J].
Acosta, FP .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1997, 85 (02) :315-323
[48]   Besov Spaces, Multipliers and Univalent Functions [J].
Petros Galanopoulos ;
Daniel Girela ;
María J. Martín .
Complex Analysis and Operator Theory, 2013, 7 :1081-1116
[49]   On Some Properties of Superreflexive Besov Spaces [J].
Agadzhanov, A. N. .
DOKLADY MATHEMATICS, 2020, 101 (03) :177-181
[50]   On Some Properties of Superreflexive Besov Spaces [J].
A. N. Agadzhanov .
Doklady Mathematics, 2020, 101 :177-181