Haar system;
Besov spaces;
Schauder bases in quasi-Banach spaces;
unconditional convergence;
piecewise-constant approximation;
CLASSICAL FUNCTION-SPACES;
SPLINE BASES;
UNCONDITIONAL CONVERGENCE;
APPROXIMATION;
D O I:
10.1070/SM9398
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
We determine all cases for which the d-dimensional Haar wavelet system H-d on the unit cube I-d is a conditional or unconditional Schauder basis in the classical isotropic Besov function spaces B-p,q,1(s)(I-d), 0 < p, q < infinity, 0 <= s < 1/p, defined in terms of first-order L-p-moduli of smoothness. We obtain similar results for the tensor-product Haar system <(H)over tilde>(d), and characterize the parameter range for which the dual of B-p,q,1(s) (I-d) is trivial for 0 < p < 1.