Multivariate Haar systems in Besov function spaces

被引:1
作者
Oswald, P. [1 ]
机构
[1] Univ Bonn, Inst Numer Simulat, Bonn, Germany
关键词
Haar system; Besov spaces; Schauder bases in quasi-Banach spaces; unconditional convergence; piecewise-constant approximation; CLASSICAL FUNCTION-SPACES; SPLINE BASES; UNCONDITIONAL CONVERGENCE; APPROXIMATION;
D O I
10.1070/SM9398
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We determine all cases for which the d-dimensional Haar wavelet system H-d on the unit cube I-d is a conditional or unconditional Schauder basis in the classical isotropic Besov function spaces B-p,q,1(s)(I-d), 0 < p, q < infinity, 0 <= s < 1/p, defined in terms of first-order L-p-moduli of smoothness. We obtain similar results for the tensor-product Haar system <(H)over tilde>(d), and characterize the parameter range for which the dual of B-p,q,1(s) (I-d) is trivial for 0 < p < 1.
引用
收藏
页码:810 / 842
页数:33
相关论文
共 50 条
  • [31] The Besov capacity in metric spaces
    Nuutinen, Juho
    ANNALES POLONICI MATHEMATICI, 2016, 117 (01) : 59 - 78
  • [32] Besov spaces on open sets
    Iwabuchi, Tsukasa
    Matsuyama, Tokio
    Taniguchi, Koichi
    BULLETIN DES SCIENCES MATHEMATIQUES, 2019, 152 : 93 - 149
  • [33] Composition Semigroups on the Besov Spaces
    Anderson, Austin
    Jovovic, Mirjana
    Smith, Wayne
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2025, 19 (03)
  • [34] The reconstruction theorem in Besov spaces
    Hairer, Martin
    Labbe, Cyril
    JOURNAL OF FUNCTIONAL ANALYSIS, 2017, 273 (08) : 2578 - 2618
  • [35] ERROR ESTIMATES FOR MULTIVARIATE REGRESSION ON DISCRETIZED FUNCTION SPACES
    Bohn, Bastian
    Griebel, Michael
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2017, 55 (04) : 1843 - 1866
  • [36] Beyond Besov Spaces, Part 2: Oscillation Spaces
    Stéphane Jaffard
    Constructive Approximation , 2004, 21 : 29 - 61
  • [37] Bi-framelet systems with few vanishing moments characterize Besov spaces
    Borup, L
    Gribonval, R
    Nielsen, M
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2004, 17 (01) : 3 - 28
  • [38] Tractable embeddings of Besov spaces into small Lebesgue spaces
    Dominguez, Oscar
    MATHEMATISCHE NACHRICHTEN, 2016, 289 (14-15) : 1739 - 1759
  • [39] Interpolation properties of Besov spaces defined on metric spaces
    Gogatishvili, Amiran
    Koskela, Pekka
    Shanmugalingam, Nageswari
    MATHEMATISCHE NACHRICHTEN, 2010, 283 (02) : 215 - 231
  • [40] Beyond Besov spaces, part 2: Oscillation spaces
    Jaffard, S
    CONSTRUCTIVE APPROXIMATION, 2005, 21 (01) : 29 - 61