Multivariate Haar systems in Besov function spaces

被引:1
作者
Oswald, P. [1 ]
机构
[1] Univ Bonn, Inst Numer Simulat, Bonn, Germany
关键词
Haar system; Besov spaces; Schauder bases in quasi-Banach spaces; unconditional convergence; piecewise-constant approximation; CLASSICAL FUNCTION-SPACES; SPLINE BASES; UNCONDITIONAL CONVERGENCE; APPROXIMATION;
D O I
10.1070/SM9398
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We determine all cases for which the d-dimensional Haar wavelet system H-d on the unit cube I-d is a conditional or unconditional Schauder basis in the classical isotropic Besov function spaces B-p,q,1(s)(I-d), 0 < p, q < infinity, 0 <= s < 1/p, defined in terms of first-order L-p-moduli of smoothness. We obtain similar results for the tensor-product Haar system <(H)over tilde>(d), and characterize the parameter range for which the dual of B-p,q,1(s) (I-d) is trivial for 0 < p < 1.
引用
收藏
页码:810 / 842
页数:33
相关论文
共 50 条
  • [21] Approximation spaces, limiting interpolation and Besov spaces
    Cobos, Fernando
    Dominguez, Oscar
    JOURNAL OF APPROXIMATION THEORY, 2015, 189 : 43 - 66
  • [22] A homogeneity property for Besov spaces
    Caetano, Antonio M.
    Lopes, Sofia
    Triebel, Hans
    JOURNAL OF FUNCTION SPACES AND APPLICATIONS, 2007, 5 (02): : 123 - 132
  • [23] Nuclear Embeddings of Besov Spaces into Zygmund Spaces
    Cobos, Fernando
    Edmunds, David E.
    Kuehn, Thomas
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2020, 26 (01)
  • [24] On the smoothness and convexity of Besov spaces
    Kazimierski, Kamil S.
    JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2013, 21 (03): : 411 - 429
  • [25] Interpolating sequences for Besov spaces
    Böe, B
    JOURNAL OF FUNCTIONAL ANALYSIS, 2002, 192 (02) : 319 - 341
  • [26] On Dilation Operators in Besov Spaces
    Schneider, Cornelia
    REVISTA MATEMATICA COMPLUTENSE, 2009, 22 (01): : 111 - 128
  • [27] The reconstruction theorem in Besov spaces
    Hairer, Martin
    Labbe, Cyril
    JOURNAL OF FUNCTIONAL ANALYSIS, 2017, 273 (08) : 2578 - 2618
  • [28] Composition Semigroups on the Besov Spaces
    Anderson, Austin
    Jovovic, Mirjana
    Smith, Wayne
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2025, 19 (03)
  • [29] The Besov capacity in metric spaces
    Nuutinen, Juho
    ANNALES POLONICI MATHEMATICI, 2016, 117 (01) : 59 - 78
  • [30] Besov spaces on open sets
    Iwabuchi, Tsukasa
    Matsuyama, Tokio
    Taniguchi, Koichi
    BULLETIN DES SCIENCES MATHEMATIQUES, 2019, 152 : 93 - 149