Smoothing Newton and quasi-Newton methods for mixed complementarity problems

被引:30
作者
Li, DH [1 ]
Fukushima, M
机构
[1] Hunan Univ, Dept Appl Math, Changsha 410082, Peoples R China
[2] Kyoto Univ, Grad Sch Informat, Dept Appl Math & Phys, Kyoto 6068501, Japan
关键词
mixed complementarity problem; smoothing function; Newton's method; quasi-Newton method;
D O I
10.1023/A:1026502415830
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
The mixed complementarity problem can be reformulated as a nonsmooth equation by using the median operator. In this paper, we first study some useful properties of this reformulation and then derive the Chen-Harker-Kanzow-Smale smoothing function for the mixed complementarity problem. On the basis of this smoothing function, we present a smoothing Newton method for solving the mixed complementarity problem. Under suitable conditions, the method exhibits global and quadratic convergence properties. We also present a smoothing Broyden-like method based on the same smoothing function. Under appropriate conditions, the method converges globally and superlinearly.
引用
收藏
页码:203 / 230
页数:28
相关论文
共 38 条
[11]   A semismooth equation approach to the solution of nonlinear complementarity problems [J].
DeLuca, T ;
Facchinei, F ;
Kanzow, C .
MATHEMATICAL PROGRAMMING, 1996, 75 (03) :407-439
[12]  
DENNIS JE, 1974, MATH COMPUT, V28, P549, DOI 10.1090/S0025-5718-1974-0343581-1
[13]  
Facchinei F., 1997, COMPLEMENTARITY VARI, P76
[15]  
FUKUSHIMA M, 1999, REFORMULATION NONSMO
[16]  
GABRIEL S. A, 1997, COMPLEMENTARITY VARI, P105
[17]  
GABRIEL SA, 1992, COMPUT OPTIM APPL, V1, P67
[18]  
Jiang HY, 1996, NONLINEAR OPTIMIZATION AND APPLICATIONS, P197
[19]   New NCP-functions and their properties [J].
Kanzow, C ;
Yamashita, N ;
Fukushima, M .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1997, 94 (01) :115-135
[20]   Theoretical and numerical investigation of the D-gap function for box constrained variational inequalities [J].
Kanzow, C ;
Fukushima, M .
MATHEMATICAL PROGRAMMING, 1998, 83 (01) :55-87