Smoothing Newton and quasi-Newton methods for mixed complementarity problems

被引:30
作者
Li, DH [1 ]
Fukushima, M
机构
[1] Hunan Univ, Dept Appl Math, Changsha 410082, Peoples R China
[2] Kyoto Univ, Grad Sch Informat, Dept Appl Math & Phys, Kyoto 6068501, Japan
关键词
mixed complementarity problem; smoothing function; Newton's method; quasi-Newton method;
D O I
10.1023/A:1026502415830
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
The mixed complementarity problem can be reformulated as a nonsmooth equation by using the median operator. In this paper, we first study some useful properties of this reformulation and then derive the Chen-Harker-Kanzow-Smale smoothing function for the mixed complementarity problem. On the basis of this smoothing function, we present a smoothing Newton method for solving the mixed complementarity problem. Under suitable conditions, the method exhibits global and quadratic convergence properties. We also present a smoothing Broyden-like method based on the same smoothing function. Under appropriate conditions, the method converges globally and superlinearly.
引用
收藏
页码:203 / 230
页数:28
相关论文
共 38 条
[1]   A penalized Fischer-Burmeister NCP-function [J].
Chen, BT ;
Chen, XJ ;
Kanzow, C .
MATHEMATICAL PROGRAMMING, 2000, 88 (01) :211-216
[2]   Smooth approximations to nonlinear complementarity problems [J].
Chen, BT ;
Harker, PT .
SIAM JOURNAL ON OPTIMIZATION, 1997, 7 (02) :403-420
[3]   A NON-INTERIOR-POINT CONTINUATION METHOD FOR LINEAR COMPLEMENTARITY-PROBLEMS [J].
CHEN, BT ;
HARKER, PT .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1993, 14 (04) :1168-1190
[4]   A global linear and local quadratic continuation smoothing method for variational inequalities with box constraints [J].
Chen, BT ;
Chen, XJ .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2000, 17 (2-3) :131-158
[5]  
Chen C. H., 1996, COMPUTATIONAL OPTIMI, V5, P97
[6]   Global and superlinear convergence of the smoothing Newton method and its application to general box constrained variational inequalities [J].
Chen, X ;
Qi, L ;
Sun, D .
MATHEMATICS OF COMPUTATION, 1998, 67 (222) :519-540
[7]   Convergence of Newton's method for singular smooth and nonsmooth equations using adaptive outer inverses [J].
Chen, XJ ;
Nashed, Z ;
Qi, LQ .
SIAM JOURNAL ON OPTIMIZATION, 1997, 7 (02) :445-462
[8]   Superlinear convergence of smoothing quasi-Newton methods for nonsmooth equations [J].
Chen, XJ .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1997, 80 (01) :105-126
[9]  
Clarke F. H., 1983, OPTIMIZATION NONSMOO
[10]   A theoretical and numerical comparison of some semismooth algorithms for complementarity problems [J].
De Luca, T ;
Facchinei, F ;
Kanzow, C .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2000, 16 (02) :173-205