Compact Wideband Wearable Antipodal Vivaldi Antenna for 5G Applications

被引:1
作者
Sahoo, Bikash Chandra [1 ]
Al-Hadi, Azremi Abdullah [1 ]
Azemi, Saidatul Norlyana [1 ]
Hoon, Wee Fwen [1 ]
Padmanathan, Surentiran [1 ]
Isa, Che Muhammad Nor Che [1 ]
Afroz, Sadia [1 ]
Loh, Yen San [2 ]
Suhaimi, Muhammad Irsyad [2 ]
Lim, Lai Ming [2 ]
Samsudin, Zambri [2 ]
Mansor, Idris [2 ]
Soh, Ping Jack [3 ]
机构
[1] Univ Malaysia Perlis, Fac Elect Engn & Technol, Adv Commun Engn Ctr Excellence, Arau 02600, Perlis, Malaysia
[2] Jabil Circuits Sdn Bhd, Mfg Technol & Innovat Dept, George Town, Penang, Malaysia
[3] Univ Oulu, Ctr Wireless Communicat CWC, Oulu 90570, Finland
来源
2022 IEEE INTERNATIONAL RF AND MICROWAVE CONFERENCE, RFM | 2022年
关键词
Wearable technology; Antipodal Vivaldi; Sub-6; Flexible antenna; 5G application; polyester;
D O I
10.1109/RFM56185.2022.10064761
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, a compact wearable antipodal Vivaldi antenna resonating at 3.5 GHz is proposed for 5G n77 and n78 bands. It is designed on a flexible polyester substrate with a dielectric constant (epsilon(r)) of 2 and loss tangent (tan delta) of 0.005. The antenna parameters were optimized via parametric analyses using CST software with a size of 33 x 33 mm(2) (length x width). The antenna is evaluated in terms of reflection coefficient (S-11), gain, efficiency, radiation pattern and surface current density and its reflection coefficient is verified with measurement. This antenna attained a maximum simulated gain of 4.17 dBi and an efficiency of 98.18 % in the resonating band.
引用
收藏
页数:4
相关论文
共 22 条
[1]  
Amir NF, 2019, INT CONF SPACE SCI, P121, DOI [10.1109/IconSpace.2019.8905953, 10.1109/iconspace.2019.8905953]
[2]   Fully Fabric High Impedance Surface-Enabled Antenna for Wearable Medical Applications [J].
Ashyap, Adel Y. I. ;
Dahlan, Samsul Haimi Bin ;
Abidin, Zuhairiah Zainal ;
Rahim, Sharul Kamal Abdul ;
Majid, Huda A. ;
Alqadami, Abdulrahman S. M. ;
Atrash, Mohamed El .
IEEE ACCESS, 2021, 9 :6948-6960
[3]  
El Khashab Effat O., 2012, 2012 IEEE Radio and Wireless Symposium (RWS), P95, DOI 10.1109/RWS.2012.6175349
[4]   Dual-Band Antipodal Vivaldi Antenna For Wireless Neural Monitoring Applications [J].
Gopavajhula, Suryach ;
Kumar, Sandeep ;
Narasimhadhan, A., V .
2020 5TH IEEE INTERNATIONAL CONFERENCE ON RECENT ADVANCES AND INNOVATIONS IN ENGINEERING (IEEE - ICRAIE-2020), 2020,
[5]  
Ha S, 2010, ASIA PACIF MICROWAVE, P2256
[6]  
Herzi R., 2018, MED MICR S 2017 NOV, V2017, P1, DOI [10.1109/MMS.2017.8497146, DOI 10.1109/MMS.2017.8497146]
[7]   A Small Antipodal Vivaldi Antenna for Ultrawide-Band Applications [J].
Hood, Aaron Zachary ;
Karacolak, Tutku ;
Topsakal, Erdem .
IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2008, 7 (656-660) :656-660
[8]   Design of a microstrip antenna for Breast Cancer Detection [J].
Kaschel, Hector ;
Ahumada, Cristian .
2021 IEEE CHILEAN CONFERENCE ON ELECTRICAL, ELECTRONICS ENGINEERING, INFORMATION AND COMMUNICATION TECHNOLOGIES (IEEE CHILECON 2021), 2021, :198-202
[9]   Compact polyimide-based antennas for flexible displays [J].
Khaleel, Haider R. ;
Al-Rizzo, Hussain M. ;
Rucker, Daniel G. .
IEEE/OSA Journal of Display Technology, 2012, 8 (02) :91-96
[10]  
Kumar R., 2016, P INT C COMM EL SYST, P1, DOI [10.1109/CESYS.2016.7889997, DOI 10.1109/CESYS.2016.7889997]