Hole traps and persistent photocapacitance in proton irradiated β-Ga2O3 films doped with Si

被引:96
作者
Polyakov, A. Y. [1 ]
Smirnov, N. B. [1 ]
Shchemerov, I., V [1 ]
Pearton, S. J. [2 ]
Ren, F. [3 ]
Chernykh, A., V [1 ,4 ]
Lagov, P. B. [1 ,5 ]
Kulevoy, T., V [6 ]
机构
[1] Natl Univ Sci & Technol MISiS, 4 Leninsky Ave, Moscow 194017, Russia
[2] Univ Florida, Dept Mat Sci & Engn, Gainesville, FL 32611 USA
[3] Univ Florida, Dept Chem Engn, Gainesville, FL 32611 USA
[4] Joint Stock Co, Pulsar Sci & Prod Enterprise, Okruzhnoy Way,House 27, Moscow 105187, Russia
[5] Russian Acad Sci IPSE RAS, AN Frumkin Inst Phys Chem & Electrochem, Lab Radiat Technol, 31 Leninsky Ave, Moscow 119071, Russia
[6] ITEP RAS, 25 B Cheremushkinskaya St, Moscow 117218, Russia
来源
APL MATERIALS | 2018年 / 6卷 / 09期
关键词
GALLIUM OXIDE; PHOTOCONDUCTIVITY; KINETICS; DEFECTS; LAYERS; POWER;
D O I
10.1063/1.5042646
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Hole traps in hydride vapor phase epitaxy beta-Ga2O3 films were studied by deep level transient spectroscopy with electrical and optical excitation (DLTS and ODLTS) and by photocapacitance and temperature dependence measurements. Irradiation with 20 MeV protons creates deep electron and hole traps, a strong increase in photocapacitance, and prominent persistent photocapacitance that partly persists above room temperature. Three hole-trap-like signals H1 [self-trapped holes (STH)], H2 [electron capture barrier (ECB)], and H3, with activation energies 0.2 eV, 0.4 eV, 1.3 eV, respectively, were detected in ODLTS. The H1 (STH) feature is suggested to correspond to the transition of polaronic states of STH to mobile holes in the valence band. The broad H2 (ECB) feature is due to overcoming of the ECB of the centers responsible for persistent photocapacitance for temperatures below 250 K. The H3 peak is produced by detrapping of holes from E-v + 1.3 eV hole traps believed to be related to gallium vacancy acceptors. One more deep acceptor with optical ionization threshold near 2.3 eV is likely responsible for high temperature persistent photocapacitance surviving up to temperatures higher than 400 K. The latter traps show a significant barrier for capture of electrons. (C) 2018 Author(s).
引用
收藏
页数:10
相关论文
共 31 条
  • [1] Role of self-trapped holes in the photoconductive gain of β-gallium oxide Schottky diodes
    Armstrong, Andrew M.
    Crawford, Mary H.
    Jayawardena, Asanka
    Ahyi, Ayayi
    Dhar, Sarit
    [J]. JOURNAL OF APPLIED PHYSICS, 2016, 119 (10)
  • [2] Bayraktaroglu B., 2017, AFRLRYWPTR20170167 D
  • [3] P-type β-gallium oxide: A new perspective for power and optoelectronic devices
    Chikoidze, Ekaterine
    Fellous, Adel
    Perez-Tomas, Amador
    Sauthier, Guillaume
    Tchelidze, Tamar
    Cuong Ton-That
    Tung Thanh Huynh
    Phillips, Matthew
    Russell, Stephen
    Jennings, Mike
    Berini, Bruno
    Jomard, Francois
    Dumont, Yves
    [J]. MATERIALS TODAY PHYSICS, 2017, 3 : 118 - 126
  • [4] KINETICS OF PERSISTENT PHOTOCONDUCTIVITY IN AL0.3GA0.7AS AND ZN0.3CD0.7SE SEMICONDUCTOR ALLOYS
    DISSANAYAKE, A
    ELAHI, M
    JIANG, HX
    LIN, JY
    [J]. PHYSICAL REVIEW B, 1992, 45 (24): : 13996 - 14004
  • [5] Effects of oxygen vacancies on the structural and optical properties of β-Ga2O3
    Dong, Linpeng
    Jia, Renxu
    Xin, Bin
    Peng, Bo
    Zhang, Yuming
    [J]. SCIENTIFIC REPORTS, 2017, 7
  • [6] Deep level defects in Ge-doped (010) β-Ga2O3 layers grown by plasma-assisted molecular beam epitaxy
    Farzana, Esmat
    Ahmadi, Elaheh
    Speck, James S.
    Arehart, Aaron R.
    Ringel, Steven A.
    [J]. JOURNAL OF APPLIED PHYSICS, 2018, 123 (16)
  • [7] Homo- and heteroepitaxial growth of Sn-doped β-Ga2O3 layers by MOVPE
    Gogova, D.
    Schmidbauer, M.
    Kwasniewski, A.
    [J]. CRYSTENGCOMM, 2015, 17 (35): : 6744 - 6752
  • [8] Structural properties of Si-doped β-Ga2O3 layers grown by MOVPE
    Gogova, D.
    Wagner, G.
    Baldini, M.
    Schmidbauer, M.
    Irmscher, K.
    Schewski, R.
    Galazka, Z.
    Albrecht, M.
    Fornari, R.
    [J]. JOURNAL OF CRYSTAL GROWTH, 2014, 401 : 665 - 669
  • [9] Iron and intrinsic deep level states in Ga2O3
    Ingebrigtsen, M. E.
    Varley, J. B.
    Kuznetsov, A. Yu.
    Svensson, B. G.
    Alfieri, G.
    Mihaila, A.
    Badstubner, U.
    Vines, L.
    [J]. APPLIED PHYSICS LETTERS, 2018, 112 (04)
  • [10] Electrical properties of β-Ga2O3 single crystals grown by the Czochralski method
    Irmscher, K.
    Galazka, Z.
    Pietsch, M.
    Uecker, R.
    Fornari, R.
    [J]. JOURNAL OF APPLIED PHYSICS, 2011, 110 (06)