Improved delay-dependent stability criteria for discrete-time stochastic neural networks with time-varying delays

被引:2
作者
Luo, Meng-zhuo [1 ]
Zhong, Shou-ming [1 ]
机构
[1] Univ Elect Sci & Technol China, Sch Math & Sci, Chengdu 611731, Peoples R China
来源
CEIS 2011 | 2011年 / 15卷
关键词
Delay-dependent stability; Neural network; Time-varying delay; Lyapunov-Krasovskii; Linear matrix inequalities;
D O I
10.1016/j.proeng.2011.08.837
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This letter, investigates the problem of mean square exponential stability for a class of discrete-time stochastic neural network with time-varying delays. By constructing a appropriate Lyapunov-Krasovskii functional, combining the stochastic stability theory, and the convex theory method, a delay-dependent exponential stability criteria is obtained in term of LMIs. Finally, a numerical example is exploited to show the usefulness of the results derived.
引用
收藏
页数:5
相关论文
共 4 条
[1]  
Cichoki A., 1993, NEURAL NETWORKS OPTI
[2]   Robust stability analysis for discrete-time stochastic neural networks systems with time-varying delays [J].
Luo, Mengzhuo ;
Zhong, Shouming ;
Wang, Rongjun ;
Kang, Wei .
APPLIED MATHEMATICS AND COMPUTATION, 2009, 209 (02) :305-313
[3]  
Stuart A., 1998, Dynamical systems and numerical analysis
[4]   Delay-distribution-dependent stability of stochastic discrete-time neural networks with randomly mixed time-varying delays [J].
Tang, Yang ;
Fang, Jian-an ;
Xia, Min ;
Yu, Dongmei .
NEUROCOMPUTING, 2009, 72 (16-18) :3830-3838