SimTB, a simulation toolbox for fMRI data under a model of spatiotemporal separability

被引:161
作者
Erhardt, Erik B. [1 ,2 ]
Allen, Elena A. [2 ]
Wei, Yonghua [1 ]
Eichele, Tom [3 ,5 ]
Calhoun, Vince D. [2 ,4 ]
机构
[1] Univ New Mexico, Dept Math & Stat, Albuquerque, NM 87131 USA
[2] Mind Res Network, Albuquerque, NM USA
[3] Univ Bergen, Dept Biol & Med Psychol, Bergen, Norway
[4] Univ New Mexico, Dept Elect & Comp Engn, Albuquerque, NM 87131 USA
[5] Haukeland Hosp, Dept Neurol, Clin Neurophysiol Sect, N-5021 Bergen, Norway
基金
美国国家科学基金会;
关键词
Simulation; fMRI; Group analysis; INDEPENDENT COMPONENT ANALYSIS; FUNCTIONAL CONNECTIVITY; BLOOD-FLOW; BRAIN; NETWORKS; MOTION; ALGORITHMS; DIMENSIONALITY; ACTIVATION; NOISE;
D O I
10.1016/j.neuroimage.2011.11.088
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
We introduce SimTB, a MATLAB toolbox designed to simulate functional magnetic resonance imaging (fMRI) datasets under a model of spatiotemporal separability. The toolbox meets the increasing need of the fMRI community to more comprehensively understand the effects of complex processing strategies by providing a ground truth that estimation methods may be compared against. SimTB captures the fundamental structure of real data, but data generation is fully parameterized and fully controlled by the user, allowing for accurate and precise comparisons. The toolbox offers a wealth of options regarding the number and configuration of spatial sources, implementation of experimental paradigms, inclusion of tissue-specific properties, addition of noise and head movement, and much more. A straightforward data generation method and short computation time (3-10 seconds for each dataset) allow a practitioner to simulate and analyze many datasets to potentially understand a problem from many angles. Beginning MATLAB users can use the SimTB graphical user interface (GUI) to design and execute simulations while experienced users can write batch scripts to automate and customize this process. The toolbox is freely available at http://mialab.mm.org/software together with sample scripts and tutorials. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:4160 / 4167
页数:8
相关论文
共 50 条
[1]   The Effect of Model Order Selection in Group PICA [J].
Abou-Elseoud, Ahmed ;
Starck, Tuomo ;
Remes, Jukka ;
Nikkinen, Juha ;
Tervonen, Osmo ;
Kiviniemi, Vesa .
HUMAN BRAIN MAPPING, 2010, 31 (08) :1207-1216
[2]  
Allen E., NEUROIMAGE IN PRESS
[3]  
Allen E., 2010, HUM BRAIN MAPP
[4]   A baseline for the multivariate comparison of resting-state networks [J].
Allen, Elena A. ;
Erhardt, Erik B. ;
Damaraju, Eswar ;
Gruner, William ;
Segall, Judith M. ;
Silva, Rogers F. ;
Havlicek, Martin ;
Rachakonda, Srinivas ;
Fries, Jill ;
Kalyanam, Ravi ;
Michael, Andrew M. ;
Caprihan, Arvind ;
Turner, Jessica A. ;
Eichele, Tom ;
Adelsheim, Steven ;
Bryan, Angela D. ;
Bustillo, Juan ;
Clark, Vincent P. ;
Ewing, Sarah W. Feldstein ;
Filbey, Francesca ;
Ford, Corey C. ;
Hutchison, Kent ;
Jung, Rex E. ;
Kiehl, Kent A. ;
Kodituwakku, Piyadasa ;
Komesu, Yuko M. ;
Mayer, Andrew R. ;
Pearlson, Godfrey D. ;
Phillips, John P. ;
Sadek, Joseph R. ;
Stevens, Michael ;
Teuscher, Ursina ;
Thoma, Robert J. ;
Calhoun, Vince D. .
FRONTIERS IN SYSTEMS NEUROSCIENCE, 2011, 5
[5]   A quantitative comparison of motion detection algorithms in fMRI [J].
Ardekani, BA ;
Bachman, AH ;
Helpern, JA .
MAGNETIC RESONANCE IMAGING, 2001, 19 (07) :959-963
[6]   Quantification in functional magnetic resonance imaging: Fuzzy clustering vs. correlation analysis [J].
Baumgartner, R ;
Windischberger, C ;
Moser, E .
MAGNETIC RESONANCE IMAGING, 1998, 16 (02) :115-125
[7]   Comparison of two exploratory data analysis methods for fMRI: fuzzy clustering vs. principal component analysis [J].
Baumgartner, R ;
Ryner, L ;
Richter, W ;
Summers, R ;
Jarmasz, M ;
Somorjai, R .
MAGNETIC RESONANCE IMAGING, 2000, 18 (01) :89-94
[8]   Probabilistic independent component analysis for functional magnetic resonance imaging [J].
Beckmann, CF ;
Smith, SA .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2004, 23 (02) :137-152
[9]   Identification of large-scale networks in the brain using fMRI [J].
Bellec, P ;
Perlbarg, V ;
Jbabdi, S ;
Pélégrini-Issac, W ;
Anton, JL ;
Doyon, J ;
Benali, H .
NEUROIMAGE, 2006, 29 (04) :1231-1243
[10]   Bootstrap generation and evaluation of an fMRI simulation database [J].
Bellec, Pierre ;
Perlbarg, Vincent ;
Evans, Alan C. .
MAGNETIC RESONANCE IMAGING, 2009, 27 (10) :1382-1396