The global weak sharp minima with explicit exponents in polynomial vector optimization problems

被引:2
作者
Tien Son Pham [1 ,2 ]
Xuan Duc Ha Truong [3 ]
Yao, Jen-Chih [4 ]
机构
[1] Ton Duc Thang Univ, Inst Computat Sci, Div Computat Math & Engn, Ho Chi Minh City, Vietnam
[2] Ton Duc Thang Univ, Fac Math & Stat, Ho Chi Minh City, Vietnam
[3] Vietnam Acad Sci & Technol, Inst Math, 18 Hoang Quoc Viet Rd, Hanoi 10307, Vietnam
[4] China Med Univ, Ctr Gen Educ, Taichung 40402, Taiwan
关键词
Global weak sharp minima with explicit exponents; Vector optimization; Polynomials; LINEAR MULTIOBJECTIVE OPTIMIZATION; ERROR-BOUNDS; LOJASIEWICZ EXPONENT; SYSTEMS; SPACES;
D O I
10.1007/s11117-017-0509-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we discuss the global weak sharp minima property for vector optimization problems with polynomial data. Exploiting the imposed polynomial structure together with tools of variational analysis and a quantitative version of Aojasiewicz's gradient inequality due to D'Acunto and Kurdyka, we establish the Holder type global weak sharp minima with explicitly calculated exponents.
引用
收藏
页码:219 / 244
页数:26
相关论文
共 35 条
[1]  
[Anonymous], 1987, Introduction to optimization: optimization software
[2]  
[Anonymous], 2005, MULTICRITERIA OPTIMI
[3]  
[Anonymous], 1999, INT SERIES OPERATION
[4]   Weak sharp efficiency and growth condition for vector-valued functions with applications [J].
Bednarczuk, EM .
OPTIMIZATION, 2004, 53 (5-6) :455-474
[5]   WEAK SHARP MINIMA IN MATHEMATICAL-PROGRAMMING [J].
BURKE, JV ;
FERRIS, MC .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1993, 31 (05) :1340-1359
[6]  
Clarke F., 1983, OPTIMIZATION NONSMOO
[7]  
DAcunto D., 2005, Ann. Pol. Math., V87, P51
[8]   Weak sharp minima in multicriteria linear programming [J].
Deng, S ;
Yang, XQ .
SIAM JOURNAL ON OPTIMIZATION, 2005, 15 (02) :456-460
[9]   LOJASIEWICZ INEQUALITY FOR POLYNOMIAL FUNCTIONS ON NON-COMPACT DOMAINS [J].
Dinh Si Tiep ;
Ha Huy Vui .
INTERNATIONAL JOURNAL OF MATHEMATICS, 2012, 23 (04)
[10]   NON-CONVEX MINIMIZATION PROBLEMS [J].
EKELAND, I .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1979, 1 (03) :443-474