Sign-changing solutions of competition-diffusion elliptic systems and optimal partition problems

被引:68
作者
Tavares, Hugo [1 ]
Terracini, Susanna [2 ]
机构
[1] Univ Lisbon, Fac Sci, CMAF, P-1649003 Lisbon, Portugal
[2] Univ Milano Bicocca, Dipartimento Matemat & Applicaz, I-20126 Milan, Italy
来源
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE | 2012年 / 29卷 / 02期
关键词
Elliptic systems; Optimal partition problems; Sign-changing solutions; Minimax methods; NODAL DOMAINS; BOUNDS;
D O I
10.1016/j.anihpc.2011.10.006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we prove the existence of infinitely many sign-changing solutions for the system of m Schrodinger equations with competition interactions -Delta u(i) + a(i)u(i)(3) + beta u(i) (j not equal i)Sigma u(2)j = lambda(i),beta u(i), u(i) is an element of H-0(1)(Omega), i = 1, ... , m where Omega is a bounded domain, beta > 0 and (a(i) >= 0 for all i. Moreover, for a(i) = O. we show a relation between critical energies associated with this system and the optimal partition problem omega i boolean AND omega j=(sic)for all i not equal j omega i subset of Omega open inf (i=1)Sigma(m) lambda(ki)(omega(i)), where lambda(ki) (omega) denotes the k(i)-th eigenvalue of -Delta in H-0(1) (omega). In the case k(i) <= 2 we show that the optimal partition problem appears as a limiting critical value, as the competition parameter beta diverges to + infinity. (C) 2011 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:279 / 300
页数:22
相关论文
共 22 条
[1]   Sign changing solutions of superlinear Schrodinger equations [J].
Bartsch, T ;
Liu, ZL ;
Weth, T .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2004, 29 (1-2) :25-42
[2]   A Liouville theorem, a-priori bounds, and bifurcating branches of positive solutions for a nonlinear elliptic system [J].
Bartsch, Thomas ;
Dancer, E. Norman ;
Wang, Zhi-Qiang .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2010, 37 (3-4) :345-361
[3]  
Bourdin B., 2009, J SCI COMP, V6, P4100
[4]  
Bucur D, 1998, Adv Math Sci Appl, V8, P571
[5]   Singularly perturbed elliptic systems and multi-valued harmonic functions with free boundaries [J].
Caffarelli, L. A. ;
Lin, Fang-Hua .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 21 (03) :847-862
[6]   An optimal partition problem for eigenvalues [J].
Cafferelli, L. A. ;
Lin, Fang Hua .
JOURNAL OF SCIENTIFIC COMPUTING, 2007, 31 (1-2) :5-18
[7]   ON A NEW INDEX THEORY AND NON SEMI-TRIVIAL SOLUTIONS FOR ELLIPTIC SYSTEMS [J].
Chang, Kung-Ching ;
Wang, Zhi-Qiang ;
Zhang, Tan .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2010, 28 (02) :809-826
[8]   Segregated nodal domains of two-dimensional multispecies Bose-Einstein condensates [J].
Chang, SM ;
Lin, CS ;
Lin, TC ;
Lin, WW .
PHYSICA D-NONLINEAR PHENOMENA, 2004, 196 (3-4) :341-361
[9]   On a class of optimal partition problems related to the Fucik spectrum and to the monotonicity formulae [J].
Conti, M ;
Terracini, S ;
Verzini, G .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2005, 22 (01) :45-72
[10]   Remarks on variational methods and lower-upper solutions [J].
Conti, Monica ;
Merizzi, Luca ;
Terracini, Susanna .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 1999, 6 (04) :371-393