On minimal decomposition of p-adic polynomial dynamical systems

被引:33
作者
Fan, Aihua [2 ,3 ]
Liao, Lingmin [1 ,2 ]
机构
[1] Univ Paris Est Creteil Val de Marne, CNRS, LAMA UMR 8050, F-94010 Creteil, France
[2] Wuhan Univ, Dept Math, Wuhan 430072, Peoples R China
[3] Univ Picardie Jules Verne, CNRS, LAMFA UMR 6140, F-80039 Amiens 1, France
关键词
p-Adic dynamical system; Minimal component; Quadratic polynomial; MAPS; CYCLES;
D O I
10.1016/j.aim.2011.06.032
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A polynomial of degree >= 2 with coefficients in the ring of p-adic numbers Z(p) is studied as a dynamical system on Z(p). is proved that the dynamical behavior of such a system is totally described by its minimal subsystems. For an arbitrary quadratic polynomial on Z(2), we exhibit all its minimal subsystems. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:2116 / 2144
页数:29
相关论文
共 41 条
[1]  
Anashin V, 2009, DEGRUYTER EXPOS MATH, V49, P1, DOI 10.1515/9783110203011
[2]  
Anashin V. S., 2002, Discrete Mathematics and Applications, V12, P527
[3]  
Anashin V, 2006, AIP CONF PROC, V826, P3, DOI 10.1063/1.2193107
[4]  
[Anonymous], THESIS BROWN U
[5]  
[Anonymous], 1982, GRAD TEXTS MATH
[6]  
[Anonymous], ARXIVMATH0103046V1
[7]   Reduction, dynamics, and Julia sets of rational functions [J].
Benedetto, RL .
JOURNAL OF NUMBER THEORY, 2001, 86 (02) :175-195
[8]  
Benedetto RL, 2001, ERGOD THEOR DYN SYST, V21, P1
[9]   LIAPUNOV STABILITY AND ADDING MACHINES [J].
BUESCU, J ;
STEWART, I .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1995, 15 :271-290
[10]   MINIMAL DYNAMICAL SYSTEMS ON A DISCRETE VALUATION DOMAIN [J].
Chabert, Jean-Luc ;
Fan, Ai-Hua ;
Fares, Youssef .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2009, 25 (03) :777-795