De novo sequencing of root transcriptome reveals complex cadmium-responsive regulatory networks in radish (Raphanus sativus L.)

被引:68
|
作者
Xu, Liang [1 ]
Wang, Yan [1 ]
Liu, Wei [1 ]
Wang, Jin [2 ]
Zhu, Xianwen [3 ]
Zhang, Keyun [2 ]
Yu, Rugang [1 ]
Wang, Ronghua [1 ]
Xie, Yang [1 ]
Zhang, Wei [1 ]
Gong, Yiqin [1 ]
Liu, Liwang [1 ]
机构
[1] Nanjing Agr Univ, Coll Hort, Natl Key Lab Crop Genet & Germplasm Enhancement, Nanjing 210095, Jiangsu, Peoples R China
[2] Nanjing Agr Univ, Coll Life Sci, Nanjing 210095, Jiangsu, Peoples R China
[3] N Dakota State Univ, Dept Plant Sci, Fargo, ND 58108 USA
基金
中国国家自然科学基金;
关键词
Cadmium (Cd) stress; Raphanus sativus; Transcriptome; Differentially expressed gene (DEG); microRNAs; Gene expression profile; GENOME-WIDE IDENTIFICATION; RNA-SEQ DATA; GENE-EXPRESSION; PROFILE ANALYSIS; METAL TOXICITY; MICRORNAS; STRESS; PLANTS; MAIZE; TRANSLOCATION;
D O I
10.1016/j.plantsci.2015.04.015
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Cadmium (Cd) is a nonessential metallic trace element that poses potential chronic toxicity to living organisms. To date, little is known about the Cd-responsive regulatory network in root vegetable crops including radish. In this study, 31,015 unigenes representing 66,552 assembled unique transcripts were isolated from radish root under Cd stress based on de nova transcriptome assembly. In all, 1496 differentially expressed genes (DEGs) consisted of 3579 transcripts were identified from Cd-free (CK) and Cd-treated (Cd200) libraries. Gene Ontology and pathway enrichment analysis indicated that the up- and down-regulated DEGs were predominately involved in glucosinolate biosynthesis as well as cysteine and methionine-related pathways, respectively. RT-qPCR showed that the expression profiles of DEGs were in consistent with results from RNA-Seq analysis. Several candidate genes encoding phytochelatin synthase (PCS), metallothioneins (MTs), glutathione (GSH), zinc iron permease (ZIPs) and ABC transporter were responsible for Cd uptake, accumulation, translocation and detoxification in radish. The schematic model of DEGs and microRNAs-involved in Cd-responsive regulatory network was proposed. This study represents a first comprehensive transcriptome-based characterization of Cd-responsive DEGs in radish. These results could provide fundamental insight into complex Cd-responsive regulatory networks and facilitate further genetic manipulation of Cd accumulation in root vegetable crops. (C) 2015 Elsevier Ireland Ltd. All rights reserved.
引用
收藏
页码:313 / 323
页数:11
相关论文
共 50 条
  • [1] Transcriptome Profiling of Taproot Reveals Complex Regulatory Networks during Taproot Thickening in Radish (Raphanus sativus L.)
    Yu, Rugang
    Wang, Jing
    Xu, Liang
    Wang, Yan
    Wang, Ronghua
    Zhu, Xianwen
    Sun, Xiaochuan
    Luo, Xiaobo
    Xie, Yang
    Everlyne, Muleke
    Liu, Liwang
    FRONTIERS IN PLANT SCIENCE, 2016, 7
  • [2] Identification of critical genes associated with lignin biosynthesis in radish (Raphanus sativus L.) by de novo transcriptome sequencing
    Feng, Haiyang
    Xu, Liang
    Wang, Yan
    Tang, Mingjia
    Zhu, Xianwen
    Zhang, Wei
    Sun, Xiaochuan
    Nie, Shanshan
    Muleke, Everlyne M'mbone
    Liu, Liwang
    MOLECULAR GENETICS AND GENOMICS, 2017, 292 (05) : 1151 - 1163
  • [3] Identification of critical genes associated with lignin biosynthesis in radish (Raphanus sativus L.) by de novo transcriptome sequencing
    Haiyang Feng
    Liang Xu
    Yan Wang
    Mingjia Tang
    Xianwen Zhu
    Wei Zhang
    Xiaochuan Sun
    Shanshan Nie
    Everlyne M’mbone Muleke
    Liwang Liu
    Molecular Genetics and Genomics, 2017, 292 : 1151 - 1163
  • [4] De novo transcriptome sequencing of radish (Raphanus sativus L.) and analysis of major genes involved in glucosinolate metabolism
    Wang, Yan
    Pan, Yan
    Liu, Zhe
    Zhu, Xianwen
    Zhai, Lulu
    Xu, Liang
    Yu, Rugang
    Gong, Yiqin
    Liu, Liwang
    BMC GENOMICS, 2013, 14
  • [5] Novel and useful genic-SSR markers from de novo transcriptome sequencing of radish (Raphanus sativus L.)
    Zhai, Lulu
    Xu, Liang
    Wang, Yan
    Cheng, Huan
    Chen, Yinglong
    Gong, Yiqin
    Liu, Liwang
    MOLECULAR BREEDING, 2014, 33 (03) : 611 - 624
  • [6] Novel and useful genic-SSR markers from de novo transcriptome sequencing of radish (Raphanus sativus L.)
    Lulu Zhai
    Liang Xu
    Yan Wang
    Huan Cheng
    Yinglong Chen
    Yiqin Gong
    Liwang Liu
    Molecular Breeding, 2014, 33 : 611 - 624
  • [7] De novo Taproot Transcriptome Sequencing and Analysis of Major Genes Involved in Sucrose Metabolism in Radish (Raphanus sativus L.)
    Yu, Rugang
    Xu, Liang
    Zhang, Wei
    Wang, Yan
    Luo, Xiaobo
    Wang, Ronghua
    Zhu, Xianwen
    Xie, Yang
    Karanja, Benard
    Liu, Liwang
    FRONTIERS IN PLANT SCIENCE, 2016, 7
  • [8] Genome-wide identification and characterization of cadmium-responsive microRNAs and their target genes in radish (Raphanus sativus L.) roots
    Xu, Liang
    Wang, Yan
    Zhai, Lulu
    Xu, Yuanyuan
    Wang, Liangju
    Zhu, Xianwen
    Gong, Yiqin
    Yu, Rugang
    Limera, Cecilia
    Liu, Liwang
    JOURNAL OF EXPERIMENTAL BOTANY, 2013, 64 (14) : 4271 - 4287
  • [9] Transcriptome profiling of root microRNAs reveals novel insights into taproot thickening in radish (Raphanus sativus L.)
    Yu, Rugang
    Wang, Yan
    Xu, Liang
    Zhu, Xianwen
    Zhang, Wei
    Wang, Ronghua
    Gong, Yiqin
    Limera, Cecilia
    Liu, Liwang
    BMC PLANT BIOLOGY, 2015, 15
  • [10] Transcriptome profiling of root microRNAs reveals novel insights into taproot thickening in radish (Raphanus sativus L.)
    Rugang Yu
    Yan Wang
    Liang Xu
    Xianwen Zhu
    Wei Zhang
    Ronghua Wang
    Yiqin Gong
    Cecilia Limera
    Liwang Liu
    BMC Plant Biology, 15