An algorithm to construct new (near-) MDS or (near-) MDR self-dual codes over finite rings Zpm

被引:0
作者
Elviyenti, Mona [1 ]
Suprijanto, Djoko [1 ]
机构
[1] Inst Teknol Bandung, Fac Math & Nat Sci, Dept Math, Jl Ganesha 10, Bandung 40132, Indonesia
来源
5TH INTERNATIONAL CONFERENCE ON RESEARCH AND EDUCATION IN MATHEMATICS (ICREM5) | 2012年 / 1450卷
关键词
Codes over rings; self-dual codes; MDS codes; MDR codes;
D O I
10.1063/1.4724141
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we present an algorithm to construct self-dual codes over Z(pm). To show the powerful of our algorithm, we obtained several new self-dual MDS, near-MDS, MDR, near-MDR codes over Z(pm) partly by using generator matrices presented by Lee and Lee (2008) as inputs.
引用
收藏
页码:205 / 210
页数:6
相关论文
共 11 条
[1]  
[Anonymous], 1978, The Theory of Error-Correcting Codes
[2]  
[Anonymous], J MAT SAINS
[3]  
Bosma W., 1995, Handbook of Magma Functions
[4]  
Conway J H, 1999, Grundlehren der Mathematischen Wissenschaften, V3rd, DOI DOI 10.1007/978-1-4757-6568-7
[5]   MDR codes over Zk [J].
Dougherty, ST ;
Shiromoto, K .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2000, 46 (01) :265-269
[6]   THE Z4-LINEARITY OF KERDOCK, PREPARATA, GOETHALS, AND RELATED CODES [J].
HAMMONS, AR ;
KUMAR, PV ;
CALDERBANK, AR ;
SLOANE, NJA ;
SOLE, P .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1994, 40 (02) :301-319
[7]   Euclidean and Hermitian self-dual MDS codes over large finite fields [J].
Kim, JL ;
Lee, YJ .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2004, 105 (01) :79-95
[8]   Construction of self-dual codes over finite rings Zpm [J].
Lee, Heisook ;
Lee, Yoonjin .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2008, 115 (03) :407-422
[9]  
Rains EM, 1998, HANDBOOK OF CODING THEORY, VOLS I & II, P177
[10]  
Shiromoto K., 2001, Kumamoto J. Math., V14, P21