Progressive Attention Guided Recurrent Network for Salient Object Detection

被引:539
作者
Zhang, Xiaoning [1 ]
Wang, Tiantian [1 ]
Qi, Jinqing [1 ]
Lu, Huchuan [1 ]
Wang, Gang [2 ]
机构
[1] Dalian Univ Technol, Dalian, Peoples R China
[2] Alibaba AILabs, Hangzhou, Zhejiang, Peoples R China
来源
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR) | 2018年
关键词
D O I
10.1109/CVPR.2018.00081
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Effective convolutional features play an important role in saliency estimation but how to learn powerful features for saliency is still a challenging task. FCN-based methods directly apply multi-level convolutional features without distinction, which leads to sub-optimal results due to the distraction from redundant details. In this paper, we propose a novel attention guided network which selectively integrates multi-level contextual information in a progressive manner. Attentive features generated by our network can alleviate distraction of background thus achieve better performance. On the other hand, it is observed that most of existing algorithms conduct salient object detection by exploiting side-output features of the backbone feature extraction network. However, shallower layers of backbone network lack the ability to obtain global semantic information, which limits the effective feature learning. To address the problem, we introduce multi-path recurrent feedback to enhance our proposed progressive attention driven framework. Through multi-path recurrent connections, global semantic information from the top convolutional layer is transferred to shallower layers, which intrinsically refines the entire network. Experimental results on six benchmark datasets demonstrate that our algorithm performs favorably against the state-of-the-art approaches.
引用
收藏
页码:714 / 722
页数:9
相关论文
共 37 条
[1]   Salient Object Detection: A Benchmark [J].
Borji, Ali ;
Cheng, Ming-Ming ;
Jiang, Huaizu ;
Li, Jia .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2015, 24 (12) :5706-5722
[2]   SCA-CNN: Spatial and Channel-wise Attention in Convolutional Networks for Image Captioning [J].
Chen, Long ;
Zhang, Hanwang ;
Xiao, Jun ;
Nie, Liqiang ;
Shao, Jian ;
Liu, Wei ;
Chua, Tat-Seng .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :6298-6306
[3]   SalientShape: group saliency in image collections [J].
Cheng, Ming-Ming ;
Mitra, Niloy J. ;
Huang, Xiaolei ;
Hu, Shi-Min .
VISUAL COMPUTER, 2014, 30 (04) :443-453
[4]   Global Contrast based Salient Region Detection [J].
Cheng, Ming-Ming ;
Zhang, Guo-Xin ;
Mitra, Niloy J. ;
Huang, Xiaolei ;
Hu, Shi-Min .
2011 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2011, :409-416
[5]   Multi-Context Attention for Human Pose Estimation [J].
Chu, Xiao ;
Yang, Wei ;
Ouyang, Wanli ;
Ma, Cheng ;
Yuille, Alan L. ;
Wang, Xiaogang .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :5669-5678
[6]   Structure-measure: A New Way to Evaluate Foreground Maps [J].
Fan, Deng-Ping ;
Cheng, Ming-Ming ;
Liu, Yun ;
Li, Tao ;
Borji, Ali .
2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, :4558-4567
[7]   Deeply Supervised Salient Object Detection with Short Connections [J].
Hou, Qibin ;
Cheng, Ming-Ming ;
Hu, Xiaowei ;
Borji, Ali ;
Tu, Zhuowen ;
Torr, Philip .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :5300-5309
[8]   Caffe: Convolutional Architecture for Fast Feature Embedding [J].
Jia, Yangqing ;
Shelhamer, Evan ;
Donahue, Jeff ;
Karayev, Sergey ;
Long, Jonathan ;
Girshick, Ross ;
Guadarrama, Sergio ;
Darrell, Trevor .
PROCEEDINGS OF THE 2014 ACM CONFERENCE ON MULTIMEDIA (MM'14), 2014, :675-678
[9]   Salient Object Detection: A Discriminative Regional Feature Integration Approach [J].
Jiang, Huaizu ;
Wang, Jingdong ;
Yuan, Zejian ;
Wu, Yang ;
Zheng, Nanning ;
Li, Shipeng .
2013 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2013, :2083-2090
[10]  
Jin XJ, 2017, AAAI CONF ARTIF INTE, P4096