Hierarchical Clustering for Collaborative Filtering Recommender Systems

被引:1
作者
Inga Chalco, Cesar [1 ]
Bojorque Chasi, Rodolfo [1 ,2 ]
Hurtado Ortiz, Remigio [1 ,2 ]
机构
[1] Univ Politecn Salesiana Ecuador, Carrera Ingn Sistemas, Cuenca, Ecuador
[2] Univ Politecn Madrid, Madrid, Spain
来源
ADVANCES IN ARTIFICIAL INTELLIGENCE, SOFTWARE AND SYSTEMS ENGINEERING | 2019年 / 787卷
关键词
Recommender Systems; Collaborative Filtering; Agglomerative Hierarchical Clustering; Similarity metrics;
D O I
10.1007/978-3-319-94229-2_34
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Nowadays, the Recommender Systems (RS) that use Collaborative Filtering (CF) are objects of interest and development. CF allows RS to have a scalable filtering, vary metrics to determine the similarity between users and obtain very precise recommendations when using dispersed data. This paper proposes an RS based in Agglomerative Hierarchical Clustering (HAC) for CF. The databases used for the experiments are released and of high dispersion. We used five HAC methods in order to identify which method provides the best results, we also analyzed similarity metrics such as Pearson Correlation (PC) and Jaccard Mean Square Difference (IMSD) versus Euclidean distance. Finally, we evaluated the results of the proposed algorithm through precision, recall and accuracy.
引用
收藏
页码:346 / 356
页数:11
相关论文
共 21 条
  • [1] Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions
    Adomavicius, G
    Tuzhilin, A
    [J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2005, 17 (06) : 734 - 749
  • [2] Bojorque R., 2017, TECNICAS HIBRIDAS SI
  • [3] Covington MichaelJ., 2013, CYBER CONFLICT CYCON, P1
  • [4] Evaluation of recommender systems: A new approach
    del Olmo, Felix Hernandez
    Gaudioso, Elena
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2008, 35 (03) : 790 - 804
  • [5] Ekstrand M. D., 2011, FOUND TRENDS HUM COM, V4, P10
  • [6] Fast agglomerative clustering using a k-nearest neighbor graph
    Franti, Pasi
    Virmajoki, Olli
    Hautamaki, Ville
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2006, 28 (11) : 1875 - 1881
  • [7] Galan S. M., 2007, FILTRADO COLABORATIV, P1
  • [8] Goebel R., 2012, LECT NOTES ARTIFICIA
  • [9] Evaluating collaborative filtering recommender systems
    Herlocker, JL
    Konstan, JA
    Terveen, K
    Riedl, JT
    [J]. ACM TRANSACTIONS ON INFORMATION SYSTEMS, 2004, 22 (01) : 5 - 53
  • [10] Mining supervised classification performance studies: A meta-analytic investigation
    Jamain, Adrien
    Hand, David J.
    [J]. JOURNAL OF CLASSIFICATION, 2008, 25 (01) : 87 - 112