Effects of grazing exclusion on the spatial variability of subalpine plant communities: A multiscale approach

被引:24
作者
Deleglise, Claire [1 ]
Loucougaray, Gregory [1 ]
Alard, Didier [2 ]
机构
[1] Irstea, Res Unit Mt Ecosyst, F-38402 St Martin Dheres, France
[2] Univ Bordeaux, BIOGECO, F-33405 Talence, France
关键词
Spatial heterogeneity; Species diversity; Plant leaf traits; Quadrat size; Herbivores; Subalpine grasslands; SPECIES RICHNESS; GRASSLAND VEGETATION; FIRE FREQUENCY; HETEROGENEITY; DIVERSITY; PATTERNS; ABANDONMENT; TRAITS; BIODIVERSITY; HERBIVORES;
D O I
10.1016/j.baae.2011.08.006
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
The fine-scale spatial structure of plant communities is a key component for understanding the dynamics in vegetation following changes in land management but needs to be assessed at an appropriate scale. We studied the response of plant diversity and spatial variability of species and trait composition to grazing vs. non-grazing (>20 years) using different grain sizes of sampling in three subalpine plant communities. Species composition, diversity, and the aggregated values of 4 leaf traits were assessed at 7 grain sizes (within quadrats ranging from 25 cm(2) to 1 m(2)) in 9 grazed and ungrazed paired plots. Evenness and species richness showed a strongly community-dependent response as they increased following grazing exclusion in the less productive community and decreased in the two more productive ones. Although species richness was influenced by grazing exclusion at grains larger than 625 cm(2), evenness was affected at the finest grain investigated (25 cm(2)). In contrast, spatial variability of species composition was similarly affected across the three plant communities and increased following grazing exclusion from the 100 cm(2)-grain size. Grazing led to a sharper decline of spatial variability with increasing quadrat size revealing that the grain of spatial heterogeneity was finer in grazed plots relative to that in ungrazed ones. The response of spatial variability of aggregated trait values was less consistent, possibly because of functional redundancy between species. However, grazing exclusion increased the spatial variability of the aggregated values of leaf dry matter content and leaf carbon and nitrogen content. We suggest that spatial variability of species composition could be useful for detecting within-community changes in response to grazing management as it was detectable using a very fine scale of sampling and responded similarly to grazing treatment in every community. Such spatial variability in species composition can induce spatial organization of plant traits that may be important for community functioning.
引用
收藏
页码:609 / 619
页数:11
相关论文
共 58 条
[1]   The effect of grazing on the spatial heterogeneity of vegetation [J].
Adler, PB ;
Raff, DA ;
Lauenroth, WK .
OECOLOGIA, 2001, 128 (04) :465-479
[2]  
Allen T. F., 2017, HIERARCHY PERSPECTIV
[3]  
Allen T. F. H., 1991, ECOLOGICAL HETEROGEN
[4]  
[Anonymous], GRAZING CONSERVATION
[5]   Ungulate effects on the functional species composition of plant communities: Herbivore selectivity and plant tolerance [J].
Augustine, DJ ;
McNaughton, SJ .
JOURNAL OF WILDLIFE MANAGEMENT, 1998, 62 (04) :1165-1183
[6]  
Augustine DJ, 2001, ECOLOGY, V82, P3149, DOI 10.1890/0012-9658(2001)082[3149:EOMGOS]2.0.CO
[7]  
2
[8]   Plant species diversity and grazing in the Scandinavian mountains - patterns and processes at different spatial scales [J].
Austrheim, G ;
Eriksson, O .
ECOGRAPHY, 2001, 24 (06) :683-695
[9]   Does resource availability, resource heterogeneity or species turnover mediate changes in plant species richness in grazed grasslands? [J].
Bakker, C ;
Blair, JM ;
Knapp, AK .
OECOLOGIA, 2003, 137 (03) :385-391
[10]   MICRO-PATTERNS IN GRASSLAND VEGETATION CREATED AND SUSTAINED BY SHEEP-GRAZING [J].
BAKKER, JP ;
DELEEUW, J ;
VANWIEREN, SE .
VEGETATIO, 1984, 55 (03) :153-161