Macro-mesoporous hollow carbon spheres as anodes for lithium-ion batteries with high rate capability and excellent cycling performance

被引:49
作者
Yue, Xinyang [1 ]
Sun, Wang [1 ]
Zhang, Jing [1 ]
Wang, Fang [1 ]
Yang, Yuxiang [1 ]
Lu, Chengyi [1 ]
Wang, Zhenhua [1 ,2 ]
Rooney, David [3 ]
Sun, Kening [1 ,2 ]
机构
[1] Beijing Inst Technol, Beijing Key Lab Chem Power Source & Green Catalys, Sch Chem Engn & Environm, BIT QUB Joint Ctr Novel Energy & Mat Res, Beijing 100081, Peoples R China
[2] Collaborat Innovat Ctr Elect Vehicles Beijing, 5 Zhongguancun South Ave, Beijing 100081, Peoples R China
[3] Queens Univ, Sch Chem & Chem Engn, Belfast BT9 5AG, Antrim, North Ireland
基金
中国国家自然科学基金;
关键词
Lithium-ion battery; Anode; Carbon sphere; Macropore; Rate performance; ELECTROCHEMICAL PROPERTIES; NEGATIVE ELECTRODE; GRAPHENE SHEETS; CAPACITY; STORAGE; NANOSPHERES; SILICON; 1ST-PRINCIPLES; ADSORPTION; CATHODE;
D O I
10.1016/j.jpowsour.2016.09.029
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this work, nanostructured macro-mesoporous hollow carbon spheres (MMHCSs) with high surface areas (396 m(2) g(-1)) were synthesized as anode materials via a facile template-based method. A macro porous structure was created on the surfaces of the mesoporous hollow carbon spheres without destroying their spherical structure by etching in 20% HF. The unique nanostructure (imperfect hollow spheres) and the beneficial characteristics of amorphous carbon gave the MMHCSs a high reversible capacity of 530 mAh g(-1) at 2.5 A g(-1) over 1000 cycles. Remarkably, the MMHCSs retained an excellent rate capability of 180 mAh g(-1) at 60 A g(-1), which was superior to that of perfectly structured mesoporous hollow carbon spheres (without macropore (MHCSs)). (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:10 / 15
页数:6
相关论文
共 41 条
[1]   Nanostructured materials for advanced energy conversion and storage devices [J].
Aricò, AS ;
Bruce, P ;
Scrosati, B ;
Tarascon, JM ;
Van Schalkwijk, W .
NATURE MATERIALS, 2005, 4 (05) :366-377
[2]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[3]   Amorphous silicon as a possible anode material for Li-ion batteries [J].
Bourderau, S ;
Brousse, T ;
Schleich, DM .
JOURNAL OF POWER SOURCES, 1999, 81 :233-236
[4]   Nanomaterials for rechargeable lithium batteries [J].
Bruce, Peter G. ;
Scrosati, Bruno ;
Tarascon, Jean-Marie .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (16) :2930-2946
[5]   Electrochemical properties of nitrogen-doped carbon nanotube anode in Li-ion batteries [J].
Bulusheva, L. G. ;
Okotrub, A. V. ;
Kurenya, A. G. ;
Zhang, Hongkun ;
Zhang, Huijuan ;
Chen, Xiaohong ;
Song, Huaihe .
CARBON, 2011, 49 (12) :4013-4023
[6]   Derivation of Micro/Macro Lithium Battery Models from Homogenization [J].
Ciucci, Francesco ;
Lai, Wei .
TRANSPORT IN POROUS MEDIA, 2011, 88 (02) :249-270
[7]   Controlled Synthesis of Ultrathin Hollow Mesoporous Carbon Nanospheres for Supercapacitor Applications [J].
Dai, Yihui ;
Jiang, Hao ;
Hu, Yanjie ;
Fu, Yao ;
Li, Chunzhong .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2014, 53 (08) :3125-3130
[8]   Enhanced lithiation in defective graphene [J].
Datta, Dibakar ;
Li, Junwen ;
Koratker, Nikhil ;
Shenoy, Vivek B. .
CARBON, 2014, 80 :305-310
[9]   Electrodeposition of three-dimensional macro-/mesoporous Co3O4 nanosheet arrays as for ultrahigh rate lithium-ion battery [J].
Fan, Xiaoyong ;
Shi, Yongxin ;
Gou, Lei ;
Li, Donglin .
ELECTROCHIMICA ACTA, 2014, 142 :268-275
[10]   Nanographene-Constructed Carbon Nanofibers Grown on Graphene Sheets by Chemical Vapor Deposition: High-Performance Anode Materials for Lithium Ion Batteries [J].
Fan, Zhuang-Jun ;
Yan, Jun ;
Wei, Tong ;
Ning, Guo-Qing ;
Zhi, Lin-Jie ;
Liu, Jin-Cheng ;
Cao, Dian-Xue ;
Wang, Gui-Ling ;
Wei, Fei .
ACS NANO, 2011, 5 (04) :2787-2794