Position-Momentum Duality and Fractional Quantum Hall Effect in Chern Insulators

被引:106
作者
Claassen, Martin [1 ,2 ,3 ]
Lee, Ching Hua [4 ]
Thomale, Ronny [5 ]
Qi, Xiao-Liang [4 ]
Devereaux, Thomas P. [2 ,3 ]
机构
[1] Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA
[2] SLAC, Stanford Inst Mat & Energy Sci, Stanford, CA 94025 USA
[3] Stanford Univ, Stanford, CA 94025 USA
[4] Stanford Univ, Dept Phys, Stanford, CA 94305 USA
[5] Univ Wurzburg, Inst Theoret Phys & Astrophys, D-97074 Wurzburg, Germany
基金
欧洲研究理事会;
关键词
TOPOLOGICAL INSULATORS; MAGNETIC-FIELD; LANDAU-LEVELS; STATES; FLUID;
D O I
10.1103/PhysRevLett.114.236802
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We develop a first quantization description of fractional Chern insulators that is the dual of the conventional fractional quantum Hall (FQH) problem, with the roles of position and momentum interchanged. In this picture, FQH states are described by anisotropic FQH liquids forming in momentum-space Landau levels in a fluctuating magnetic field. The fundamental quantum geometry of the problem emerges from the interplay of single-body and interaction metrics, both of which act as momentum-space duals of the geometrical picture of the anisotropic FQH effect. We then present a novel broad class of ideal Chern insulator lattice models that act as duals of the isotropic FQH effect. The interacting problem is well-captured by Haldane pseudopotentials and affords a detailed microscopic understanding of the interplay of interactions and nontrivial quantum geometry.
引用
收藏
页数:6
相关论文
共 70 条
[11]  
Grushin A. G., 2015, PHYS REV B, V91
[12]   Floquet Fractional Chern Insulators [J].
Grushin, Adolfo G. ;
Gomez-Leon, Alvaro ;
Neupert, Titus .
PHYSICAL REVIEW LETTERS, 2014, 112 (15)
[13]   Enhancing the stability of a fractional Chern insulator against competing phases [J].
Grushin, Adolfo G. ;
Neupert, Titus ;
Chamon, Claudio ;
Mudry, Christopher .
PHYSICAL REVIEW B, 2012, 86 (20)
[14]   Geometrical Description of the Fractional Quantum Hall Effect [J].
Haldane, F. D. M. .
PHYSICAL REVIEW LETTERS, 2011, 107 (11)
[15]   PERIODIC LAUGHLIN-JASTROW WAVE-FUNCTIONS FOR THE FRACTIONAL QUANTIZED HALL-EFFECT [J].
HALDANE, FDM ;
REZAYI, EH .
PHYSICAL REVIEW B, 1985, 31 (04) :2529-2531
[18]  
HALPERIN BI, 1983, HELV PHYS ACTA, V56, P75
[19]   Colloquium: Topological insulators [J].
Hasan, M. Z. ;
Kane, C. L. .
REVIEWS OF MODERN PHYSICS, 2010, 82 (04) :3045-3067
[20]   Topological insulators and fractional quantum Hall effect on the ruby lattice [J].
Hu, Xiang ;
Kargarian, Mehdi ;
Fiete, Gregory A. .
PHYSICAL REVIEW B, 2011, 84 (15)