Position-Momentum Duality and Fractional Quantum Hall Effect in Chern Insulators

被引:105
作者
Claassen, Martin [1 ,2 ,3 ]
Lee, Ching Hua [4 ]
Thomale, Ronny [5 ]
Qi, Xiao-Liang [4 ]
Devereaux, Thomas P. [2 ,3 ]
机构
[1] Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA
[2] SLAC, Stanford Inst Mat & Energy Sci, Stanford, CA 94025 USA
[3] Stanford Univ, Stanford, CA 94025 USA
[4] Stanford Univ, Dept Phys, Stanford, CA 94305 USA
[5] Univ Wurzburg, Inst Theoret Phys & Astrophys, D-97074 Wurzburg, Germany
基金
欧洲研究理事会;
关键词
TOPOLOGICAL INSULATORS; MAGNETIC-FIELD; LANDAU-LEVELS; STATES; FLUID;
D O I
10.1103/PhysRevLett.114.236802
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We develop a first quantization description of fractional Chern insulators that is the dual of the conventional fractional quantum Hall (FQH) problem, with the roles of position and momentum interchanged. In this picture, FQH states are described by anisotropic FQH liquids forming in momentum-space Landau levels in a fluctuating magnetic field. The fundamental quantum geometry of the problem emerges from the interplay of single-body and interaction metrics, both of which act as momentum-space duals of the geometrical picture of the anisotropic FQH effect. We then present a novel broad class of ideal Chern insulator lattice models that act as duals of the isotropic FQH effect. The interacting problem is well-captured by Haldane pseudopotentials and affords a detailed microscopic understanding of the interplay of interactions and nontrivial quantum geometry.
引用
收藏
页数:6
相关论文
共 70 条
[1]  
[Anonymous], MATH P CAMBRIDGE PHI
[2]   New class of non-Abelian spin-singlet quantum Hall states [J].
Ardonne, E ;
Schoutens, K .
PHYSICAL REVIEW LETTERS, 1999, 82 (25) :5096-5099
[3]   Topological Nematic States and Non-Abelian Lattice Dislocations [J].
Barkeshli, Maissam ;
Qi, Xiao-Liang .
PHYSICAL REVIEW X, 2012, 2 (03)
[4]   TOPOLOGICAL FLAT BAND MODELS AND FRACTIONAL CHERN INSULATORS [J].
Bergholtz, Emil J. ;
Liu, Zhao .
INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2013, 27 (24)
[5]   Emergent many-body translational symmetries of Abelian and non-Abelian fractionally filled topological insulators [J].
Bernevig, B. Andrei ;
Regnault, N. .
PHYSICAL REVIEW B, 2012, 85 (07)
[6]   Designing Topological Bands in Reciprocal Space [J].
Cooper, N. R. ;
Moessner, R. .
PHYSICAL REVIEW LETTERS, 2012, 109 (21)
[7]   Geometrical description of fractional Chern insulators based on static structure factor calculations [J].
Dobardzic, E. ;
Milovanovic, M. V. ;
Regnault, N. .
PHYSICAL REVIEW B, 2013, 88 (11)
[8]   D-algebra structure of topological insulators [J].
Estienne, B. ;
Regnault, N. ;
Bernevig, B. A. .
PHYSICAL REVIEW B, 2012, 86 (24)
[9]   Note to the Quantification of the harmonic Oscillator in a Magnetic Field [J].
Fock, V. .
ZEITSCHRIFT FUR PHYSIK, 1928, 47 (5-6) :446-448
[10]   From fractional Chern insulators to a fractional quantum spin hall effect [J].
Goerbig, M. O. .
EUROPEAN PHYSICAL JOURNAL B, 2012, 85 (01)