Adjoint linear systems on normal log surfaces

被引:9
作者
Langer, A [1 ]
机构
[1] Inst Matemat UW, PL-02097 Warsaw, Poland
关键词
linear system; normal surface; reflexive sheaf;
D O I
10.1023/A:1013137101524
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a Reider type theorem for separating any cluster by an adjoint system to a pseudoeffective divisor on a normal surface. As a corollary we get a Reider type theorem for adjoint linear systems (to a nef Q-divisor) on normal log surfaces. This theorem is new even for smooth surfaces.
引用
收藏
页码:47 / 66
页数:20
相关论文
共 16 条
[1]  
ALEXEEV V, BOUNDING SINGULAR SU
[2]   RIEMANN-ROCH THEOREM FOR NORMAL SURFACES AND APPLICATIONS [J].
BLACHE, R .
ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 1995, 65 :307-340
[3]  
Ein L., 1993, J. Amer. Math. Soc., V6, P875
[4]  
Eisenbud D., 1995, GRAD TEXTS MATH, V150
[5]   On the base point freeness of adjoint bundles on normal surfaces [J].
Kawachi, T .
MANUSCRIPTA MATHEMATICA, 2000, 101 (01) :23-38
[6]  
Kawamata Y., 1987, ADV STUDIES PURE MAT, V10, P283
[7]  
Kollar J., 1994, CONT MATH, V162, P261, DOI DOI 10.1090/CONM/162/01538
[8]   Chern classes of reflexive sheaves on normal surfaces [J].
Langer, A .
MATHEMATISCHE ZEITSCHRIFT, 2000, 235 (03) :591-614
[9]  
Langer A, 2000, J ALGEBRAIC GEOM, V9, P71
[10]  
Langer A, 1999, J ALGEBRAIC GEOM, V8, P41