Hybridizable discontinuous Galerkin methods for the time-harmonic Maxwell's equations

被引:109
作者
Nguyen, N. C. [1 ]
Peraire, J. [1 ]
Cockburn, B. [2 ]
机构
[1] MIT, Dept Aeronaut & Astronaut, Cambridge, MA 02139 USA
[2] Univ Minnesota, Sch Math, Minneapolis, MN 55455 USA
基金
美国国家科学基金会;
关键词
Finite element method; Discontinuous Galerkin methods; Hybrid/mixed methods; Postprocessing; Maxwell's equations; Computational electromagnetics; INCOMPRESSIBLE FINITE-ELEMENTS; 2ND-ORDER ELLIPTIC PROBLEMS; STOKES-FLOW; HDG METHODS; SPACE DIMENSIONS; ORDER; SYSTEM; MESHES; ERROR; BASES;
D O I
10.1016/j.jcp.2011.05.018
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We present two hybridizable discontinuous Galerkin (HDG) methods for the numerical solution of the time-harmonic Maxwell's equations. The first HDG method explicitly enforces the divergence-free condition and thus necessitates the introduction of a Lagrange multiplier. It produces a linear system for the degrees of freedom of the approximate traces of both the tangential component of the vector field and the Lagrange multiplier. The second HDG method does not explicitly enforce the divergence-free condition and thus results in a linear system for the degrees of freedom of the approximate trace of the tangential component of the vector field only. For both HDG methods, the approximate vector field converges with the optimal order of k + 1 in the L-2-norm, when polynomials of degree k are used to represent all the approximate variables. We propose elementwise postprocessing to obtain a new H-curl-conforming approximate vector field which converges with order k + 1 in the H-curl-norm. We present extensive numerical examples to demonstrate and compare the performance of the HDG methods. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:7151 / 7175
页数:25
相关论文
共 50 条
[41]   Nonlinear time-harmonic Maxwell equations in domains [J].
Bartsch, Thomas ;
Mederski, Jarosaw .
JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2017, 19 (01) :959-986
[42]   THE A POSTERIORI ERROR ESTIMATOR OF SDG METHOD FOR VARIABLE COEFFICIENTS TIME-HARMONIC MAXWELL?S EQUATIONS [J].
Yang, Wei ;
Liu, Xin ;
He, Bin ;
Huang, Yunqing .
JOURNAL OF COMPUTATIONAL MATHEMATICS, 2023, 41 (02) :263-286
[43]   CONTRACTION PROPERTY OF ADAPTIVE HYBRIDIZABLE DISCONTINUOUS GALERKIN METHODS [J].
Cockburn, Bernardo ;
Nochetto, Ricardo H. ;
Zhang, Wujun .
MATHEMATICS OF COMPUTATION, 2016, 85 (299) :1113-1141
[44]   Coupling of finite element and plane waves discontinuous Galerkin methods for time-harmonic problems [J].
Gaborit, M. ;
Dazel, O. ;
Goransson, P. ;
Gabard, G. .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2018, 116 (07) :487-503
[45]   A discontinuous Galerkin method for a time-harmonic eddy current problem [J].
Ana Alonso Rodríguez ;
Antonio Márquez ;
Salim Meddahi ;
Alberto Valli .
Calcolo, 2018, 55
[46]   Weak Galerkin methods for time-dependent Maxwell's equations [J].
Shields, Sidney ;
Li, Jichun ;
Machorro, Eric A. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 74 (09) :2106-2124
[47]   A sweeping preconditioner for time-harmonic Maxwell's equations with finite elements [J].
Tsuji, Paul ;
Engquist, Bjorn ;
Ying, Lexing .
JOURNAL OF COMPUTATIONAL PHYSICS, 2012, 231 (09) :3770-3783
[48]   Hybridizable Discontinuous Galerkin Methods for Timoshenko Beams [J].
Celiker, Fatih ;
Cockburn, Bernardo ;
Shi, Ke .
JOURNAL OF SCIENTIFIC COMPUTING, 2010, 44 (01) :1-37
[49]   Hybridizable Discontinuous Galerkin Methods for Timoshenko Beams [J].
Fatih Celiker ;
Bernardo Cockburn ;
Ke Shi .
Journal of Scientific Computing, 2010, 44 :1-37
[50]   A stabilized finite element method on nonaffine grids for time-harmonic Maxwell's equations [J].
Du, Zhijie ;
Duan, Huoyuan .
BIT NUMERICAL MATHEMATICS, 2023, 63 (04)