Hybridizable discontinuous Galerkin methods for the time-harmonic Maxwell's equations

被引:109
作者
Nguyen, N. C. [1 ]
Peraire, J. [1 ]
Cockburn, B. [2 ]
机构
[1] MIT, Dept Aeronaut & Astronaut, Cambridge, MA 02139 USA
[2] Univ Minnesota, Sch Math, Minneapolis, MN 55455 USA
基金
美国国家科学基金会;
关键词
Finite element method; Discontinuous Galerkin methods; Hybrid/mixed methods; Postprocessing; Maxwell's equations; Computational electromagnetics; INCOMPRESSIBLE FINITE-ELEMENTS; 2ND-ORDER ELLIPTIC PROBLEMS; STOKES-FLOW; HDG METHODS; SPACE DIMENSIONS; ORDER; SYSTEM; MESHES; ERROR; BASES;
D O I
10.1016/j.jcp.2011.05.018
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We present two hybridizable discontinuous Galerkin (HDG) methods for the numerical solution of the time-harmonic Maxwell's equations. The first HDG method explicitly enforces the divergence-free condition and thus necessitates the introduction of a Lagrange multiplier. It produces a linear system for the degrees of freedom of the approximate traces of both the tangential component of the vector field and the Lagrange multiplier. The second HDG method does not explicitly enforce the divergence-free condition and thus results in a linear system for the degrees of freedom of the approximate trace of the tangential component of the vector field only. For both HDG methods, the approximate vector field converges with the optimal order of k + 1 in the L-2-norm, when polynomials of degree k are used to represent all the approximate variables. We propose elementwise postprocessing to obtain a new H-curl-conforming approximate vector field which converges with order k + 1 in the H-curl-norm. We present extensive numerical examples to demonstrate and compare the performance of the HDG methods. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:7151 / 7175
页数:25
相关论文
共 50 条
[21]   Discontinuous Galerkin sparse grids methods for time domain Maxwell's equations [J].
D'Azevedo, Eduardo ;
Green, David L. ;
Mu, Lin .
COMPUTER PHYSICS COMMUNICATIONS, 2020, 256
[22]   Sparsifying preconditioner for the time-harmonic Maxwell's equations [J].
Liu, Fei ;
Ying, Lexing .
JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 376 :913-923
[23]   THE DERIVATION OF HYBRIDIZABLE DISCONTINUOUS GALERKIN METHODS FOR STOKES FLOW [J].
Cockburn, Bernardo ;
Gopalakrishnan, Jayadeep .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2009, 47 (02) :1092-1125
[24]   Stabilized interior penalty methods for the time-harmonic Maxwell equations [J].
Perugia, I ;
Schötzau, D ;
Monk, P .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2002, 191 (41-42) :4675-4697
[25]   A Multi-modes Monte Carlo Interior Penalty Discontinuous Galerkin Method for the Time-Harmonic Maxwell’s Equations with Random Coefficients [J].
Xiaobing Feng ;
Junshan Lin ;
Cody Lorton .
Journal of Scientific Computing, 2019, 80 :1498-1528
[26]   OPTIMIZED SCHWARZ METHODS FOR THE TIME-HARMONIC MAXWELL EQUATIONS WITH DAMPING [J].
El Bouajaji, M. ;
Dolean, V. ;
Gander, M. J. ;
Lanteri, S. .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2012, 34 (04) :A2048-A2071
[27]   A Multi-modes Monte Carlo Interior Penalty Discontinuous Galerkin Method for the Time-Harmonic Maxwell's Equations with Random Coefficients [J].
Feng, Xiaobing ;
Lin, Junshan ;
Lorton, Cody .
JOURNAL OF SCIENTIFIC COMPUTING, 2019, 80 (03) :1498-1528
[28]   A Comparison of the Explicit and Implicit Hybridizable Discontinuous Galerkin Methods for Nonlinear Shallow Water Equations [J].
Samii, Ali ;
Kazhyken, Kazbek ;
Michoski, Craig ;
Dawson, Clint .
JOURNAL OF SCIENTIFIC COMPUTING, 2019, 80 (03) :1936-1956
[29]   Space-Time Discontinuous Galerkin Method for Maxwell's Equations [J].
Xie, Ziqing ;
Wang, Bo ;
Zhang, Zhimin .
COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2013, 14 (04) :916-939
[30]   A NEW HETEROGENEOUS MULTISCALE METHOD FOR TIME-HARMONIC MAXWELL'S EQUATIONS [J].
Henning, Patrick ;
Ohlberger, Mario ;
Verfuerth, Barbara .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2016, 54 (06) :3493-3522