Hybridizable discontinuous Galerkin methods for the time-harmonic Maxwell's equations

被引:105
作者
Nguyen, N. C. [1 ]
Peraire, J. [1 ]
Cockburn, B. [2 ]
机构
[1] MIT, Dept Aeronaut & Astronaut, Cambridge, MA 02139 USA
[2] Univ Minnesota, Sch Math, Minneapolis, MN 55455 USA
基金
美国国家科学基金会;
关键词
Finite element method; Discontinuous Galerkin methods; Hybrid/mixed methods; Postprocessing; Maxwell's equations; Computational electromagnetics; INCOMPRESSIBLE FINITE-ELEMENTS; 2ND-ORDER ELLIPTIC PROBLEMS; STOKES-FLOW; HDG METHODS; SPACE DIMENSIONS; ORDER; SYSTEM; MESHES; ERROR; BASES;
D O I
10.1016/j.jcp.2011.05.018
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We present two hybridizable discontinuous Galerkin (HDG) methods for the numerical solution of the time-harmonic Maxwell's equations. The first HDG method explicitly enforces the divergence-free condition and thus necessitates the introduction of a Lagrange multiplier. It produces a linear system for the degrees of freedom of the approximate traces of both the tangential component of the vector field and the Lagrange multiplier. The second HDG method does not explicitly enforce the divergence-free condition and thus results in a linear system for the degrees of freedom of the approximate trace of the tangential component of the vector field only. For both HDG methods, the approximate vector field converges with the optimal order of k + 1 in the L-2-norm, when polynomials of degree k are used to represent all the approximate variables. We propose elementwise postprocessing to obtain a new H-curl-conforming approximate vector field which converges with order k + 1 in the H-curl-norm. We present extensive numerical examples to demonstrate and compare the performance of the HDG methods. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:7151 / 7175
页数:25
相关论文
共 50 条
  • [21] Discontinuous Galerkin sparse grids methods for time domain Maxwell's equations
    D'Azevedo, Eduardo
    Green, David L.
    Mu, Lin
    COMPUTER PHYSICS COMMUNICATIONS, 2020, 256
  • [22] Sparsifying preconditioner for the time-harmonic Maxwell's equations
    Liu, Fei
    Ying, Lexing
    JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 376 : 913 - 923
  • [23] THE DERIVATION OF HYBRIDIZABLE DISCONTINUOUS GALERKIN METHODS FOR STOKES FLOW
    Cockburn, Bernardo
    Gopalakrishnan, Jayadeep
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2009, 47 (02) : 1092 - 1125
  • [24] Stabilized interior penalty methods for the time-harmonic Maxwell equations
    Perugia, I
    Schötzau, D
    Monk, P
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2002, 191 (41-42) : 4675 - 4697
  • [25] A Multi-modes Monte Carlo Interior Penalty Discontinuous Galerkin Method for the Time-Harmonic Maxwell’s Equations with Random Coefficients
    Xiaobing Feng
    Junshan Lin
    Cody Lorton
    Journal of Scientific Computing, 2019, 80 : 1498 - 1528
  • [26] OPTIMIZED SCHWARZ METHODS FOR THE TIME-HARMONIC MAXWELL EQUATIONS WITH DAMPING
    El Bouajaji, M.
    Dolean, V.
    Gander, M. J.
    Lanteri, S.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2012, 34 (04) : A2048 - A2071
  • [27] A Multi-modes Monte Carlo Interior Penalty Discontinuous Galerkin Method for the Time-Harmonic Maxwell's Equations with Random Coefficients
    Feng, Xiaobing
    Lin, Junshan
    Lorton, Cody
    JOURNAL OF SCIENTIFIC COMPUTING, 2019, 80 (03) : 1498 - 1528
  • [28] A Comparison of the Explicit and Implicit Hybridizable Discontinuous Galerkin Methods for Nonlinear Shallow Water Equations
    Samii, Ali
    Kazhyken, Kazbek
    Michoski, Craig
    Dawson, Clint
    JOURNAL OF SCIENTIFIC COMPUTING, 2019, 80 (03) : 1936 - 1956
  • [29] Space-Time Discontinuous Galerkin Method for Maxwell's Equations
    Xie, Ziqing
    Wang, Bo
    Zhang, Zhimin
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2013, 14 (04) : 916 - 939
  • [30] A NEW HETEROGENEOUS MULTISCALE METHOD FOR TIME-HARMONIC MAXWELL'S EQUATIONS
    Henning, Patrick
    Ohlberger, Mario
    Verfuerth, Barbara
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2016, 54 (06) : 3493 - 3522