A 3D DISCRETE DUALITY FINITE VOLUME METHOD FOR NONLINEAR ELLIPTIC EQUATIONS

被引:42
作者
Coudiere, Yves [1 ]
Hubert, Florence [2 ]
机构
[1] Univ Nantes, Lab Math Jean Leray, ECN, CNRS,UMR 6629, Nantes, France
[2] Univ Aix Marseille 1, Lab Anal Topol & Probabil, CNRS, UMR 6632, Marseille, France
关键词
finite volume methods; error estimates; Leray-Lions operators; DIFFUSION OPERATORS; MESHES; CONVERGENCE; SCHEME; APPROXIMATION;
D O I
10.1137/100786046
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Discrete duality finite volume (DDFV) schemes have recently been developed in two dimensions to approximate nonlinear diffusion problems on general meshes. In this paper, a three-dimensional extension of these schemes is proposed. The construction of this extension is detailed and its main properties are proved: a priori bounds, well-posedness, and error estimates. The practical implementation of this scheme is easy. Numerical experiments are presented to illustrate its good behavior.
引用
收藏
页码:1739 / 1764
页数:26
相关论文
共 25 条
[1]  
Adams R., 1970, Sobolev Spaces
[2]  
Andreianov B., 2008, FINITE VOLUMES COMPL, P161
[3]  
Andreianov BA, 2004, SIAM J NUMER ANAL, V42, P228, DOI 10.1137/S00361429014000062
[4]   Discrete duality finite volume schemes for Leray-Lions-type elliptic problems on general 2D meshes [J].
Andreianov, Boris ;
Boyer, Franck ;
Hubert, Florence .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2007, 23 (01) :145-195
[5]  
BOYER F, 2008, FINITE VOLUMES COMPL, P735
[6]  
Brenner S.C., 2008, MATH THEORY FINITE E, V15
[7]   MIMETIC FINITE DIFFERENCES FOR ELLIPTIC PROBLEMS [J].
Brezzi, Franco ;
Buffa, Annalisa ;
Lipnikov, Konstantin .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2009, 43 (02) :277-295
[8]  
Coudière Y, 1999, RAIRO-MATH MODEL NUM, V33, P493
[9]  
COUDIERE Y, 2009, INT J FINITE, V6
[10]   A finite volume method for the Laplace equation on almost arbitrary two-dimensional grids [J].
Domelevo, K ;
Omnes, P .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2005, 39 (06) :1203-1249