Monocyte chemotactic protein (MCP)-1 promotes angiogenesis via a novel transcription factor, MCP-1-induced protein (MCPIP)

被引:196
作者
Niu, Jianli [1 ]
Azfer, Asim [1 ]
Zhelyabovska, Olga [1 ]
Fatma, Sumbul [1 ]
Kolattukudy, Pappachan E. [1 ]
机构
[1] Univ Cent Florida, Coll Med, Burnett Sch Biomed Sci, Orlando, FL 32826 USA
关键词
D O I
10.1074/jbc.M802139200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Monocyte chemotactic protein-1 (MCP-1) has been recognized as an angiogenic chemokine. The molecular mechanism of MCP-1-mediated angiogenesis remains unknown. We recently identified a novel transcription factor, designated MCP-1-induced protein (MCPIP), in human monocytes after treatment with MCP-1. We investigated whether MCP-1-induced angiogenesis is mediated via MCPIP. Treatment of human umbilical vein endothelial cells (HUVECs) with MCP-1 induced expression of MCPIP and capillary-like tube formation. Knockdown of MCPIP by small interfering RNA (siRNA) suppressed MCP-1-induced angiogenesis-related gene VEGF and HIF-1 alpha expression as well as tube formation. Transfection of HUVECs with an MCPIP expression vector induced angiogenesis-related genes and tube formation. Chromatin immunoprecipitation analysis revealed that cadherin (cdh) 12 and cdh19 are in vivo targets of MCPIP. Transfection of HUVECs with MCPIP expression vector activated the expression of cdh12 and cdh19 genes. Knockdown of cdh12 or cdh19 expression markedly inhibited MCPIP-induced capillary-like tube formation. Moreover, knockdown of MCPIP also significantly suppressed MCP-1-induced cdh12 and cdh19 gene expression. Our data strongly suggest that MCP-1-induced angiogenesis is mediated via MCPIP, at least in part through transcriptional activation of cdh12 and cdh19.
引用
收藏
页码:14542 / 14551
页数:10
相关论文
共 36 条
[1]   Monocyte activation in angiogenesis and collateral growth in the rabbit hindlimb [J].
Arras, M ;
Ito, WD ;
Scholz, D ;
Winkler, B ;
Schaper, J ;
Schaper, W .
JOURNAL OF CLINICAL INVESTIGATION, 1998, 101 (01) :40-50
[2]   MCP-1 induces a novel transcription factor with proapoptotic activity [J].
Bidzhekov, Kiril ;
Zernecke, Alma ;
Weber, Christian .
CIRCULATION RESEARCH, 2006, 98 (09) :1107-1109
[3]   Cadherins as modulators of angiogenesis and the structural integrity of blood vessels [J].
Blaschuk, OW ;
Rowlands, TM .
CANCER AND METASTASIS REVIEWS, 2000, 19 (1-2) :1-5
[4]   Targeted deficiency or cytosolic truncation of the VE-cadherin gene in mice impairs VEGF-mediated endothelial survival and angiogenesis [J].
Carmeliet, P ;
Lampugnani, MG ;
Moons, L ;
Breviario, F ;
Compernolle, V ;
Bono, F ;
Balconi, G ;
Spagnuolo, R ;
Oosthuyse, B ;
Dewerchin, M ;
Zanetti, A ;
Angellilo, A ;
Mattot, V ;
Nuyens, D ;
Lutgens, E ;
Clotman, F ;
de Ruiter, MC ;
Gittenberger-de Groot, A ;
Poelmann, R ;
Lupu, F ;
Herbert, JM ;
Collen, D ;
Dejana, E .
CELL, 1999, 98 (02) :147-157
[5]   Angiogenesis in life, disease and medicine [J].
Carmeliet, P .
NATURE, 2005, 438 (7070) :932-936
[6]   Chemokines in the pathogenesis of vascular disease [J].
Charo, IF ;
Taubman, MB .
CIRCULATION RESEARCH, 2004, 95 (09) :858-866
[7]  
Cheng N, 2002, MOL CANCER RES, V1, P2
[8]   The ephrins and Eph receptors in angiogenesis [J].
Cheng, N ;
Brantley, DM ;
Chen, J .
CYTOKINE & GROWTH FACTOR REVIEWS, 2002, 13 (01) :75-85
[9]   The art of arteriogenesis [J].
Deindl, E ;
Schaper, W .
CELL BIOCHEMISTRY AND BIOPHYSICS, 2005, 43 (01) :1-15
[10]   New insights into the function and regulation of endothelial cell apoptosis [J].
Hélène Duval ;
Mike Harris ;
Jia Li ;
Nicola Johnson ;
Cristin Print .
Angiogenesis, 2003, 6 (3) :171-183