Kinetic Analysis of the Thermal Decomposition of Iron(III) Phosphates: Fe(NH3)2PO4 and Fe(ND3)2PO4

被引:2
作者
Iglesias, Isabel [1 ]
Huidobro, Jose A. [2 ]
Alfonso, Belen F. [1 ]
Trobajo, Camino [3 ]
Espina, Aranzazu [4 ]
Mendoza, Rafael [4 ]
Garcia, Jose R. [4 ]
机构
[1] Univ Oviedo, Dept Fis, E-33007 Oviedo, Spain
[2] Univ Oviedo, Dept Matemat, Oviedo 33007, Spain
[3] Univ Oviedo, CINN, Dept Quim Organ & Inorgan, E-33006 Oviedo, Spain
[4] Univ Oviedo, Serv Cient Tecn, E-33006 Oviedo, Spain
关键词
metal phosphates; hydrothermal synthesis; crystal structure; thermal decomposition; kinetics; SOLID-STATE REACTIONS; ACTIVATION-ENERGY; HYDROTHERMAL SYNTHESIS;
D O I
10.3390/ijms21030781
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The hydrothermal synthesis and both the chemical and structural characterization of a diamin iron phosphate are reported. A new synthetic route, by using n-butylammonium dihydrogen phosphate as a precursor, leads to the largest crystals described thus far for this compound. Its crystal structure is determined from single-crystal X-ray diffraction data. It crystallizes in the orthorhombic system (Pnma space group, a = 10.1116(2) angstrom, b = 6.3652(1) angstrom, c = 7.5691(1) A angstrom, Z = 4) at room temperature and, below 220 K, changes towards the monoclinic system P21/n, space group. The in situ powder X-ray thermo-diffraction monitoring for the compound, between room temperature and 1100 K, is also included. Thermal analysis shows that the solid is stable up to ca. 440 K. The kinetic analysis of thermal decomposition (hydrogenated and deuterated forms) is performed by using the isoconversional methods of Vyazovkin and a modified version of Friedman. Similar values for the kinetic parameters are achieved by both methods and they are checked by comparing experimental and calculated conversion curves.
引用
收藏
页数:12
相关论文
共 30 条
[1]  
Alfonso B.F, 2008, J PHYS CONDENS MATT, V20, P6
[2]   Decoupled structural and non-collinear magnetic phase transitions in Fe(ND3)2PO4 [J].
Alfonso, Belen F. ;
Trobajo, Camino ;
Pique, Carmen ;
Teresa Fernandez-Diaz, M. ;
Rodriguez Fernandez, Jesus ;
Salvado, Miguel A. ;
Pertierra, Pilar ;
Garcia-Granda, Santiago ;
Garcia, Jose R. ;
Blanco, Jesus A. .
ACTA MATERIALIA, 2010, 58 (05) :1741-1749
[3]   SIR92 - a program for automatic solution of crystal structures by direct methods [J].
ALTOMARE, A ;
CASCARANO, G ;
GIACOVAZZO, G ;
GUAGLIARDI, A ;
BURLA, MC ;
POLIDORI, G ;
CAMALLI, M .
JOURNAL OF APPLIED CRYSTALLOGRAPHY, 1994, 27 :435-435
[4]   An overview of nanoscale radionuclides and radiolabeled nanomaterials commonly used for nuclear molecular imaging and therapeutic functions [J].
Farzin, Leila ;
Sheibani, Shahab ;
Moassesi, Mohammad Esmaeil ;
Shamsipur, Mojtaba .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2019, 107 (01) :251-285
[5]  
FRIEDMAN HL, 1964, J POLYM SCI POL SYM, P183
[6]   A THEORETICAL JUSTIFICATION FOR THE APPLICATION OF THE ARRHENIUS EQUATION TO KINETICS OF SOLID-STATE REACTIONS (MAINLY IONIC-CRYSTALS) [J].
GALWEY, AK ;
BROWN, ME .
PROCEEDINGS OF THE ROYAL SOCIETY-MATHEMATICAL AND PHYSICAL SCIENCES, 1995, 450 (1940) :501-512
[7]   The Li-Ion Rechargeable Battery: A Perspective [J].
Goodenough, John B. ;
Park, Kyu-Sung .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (04) :1167-1176
[8]   A new iron (II) hydroxyphosphate containing linear ammonium chloride chains: (NH4Cl)Fe14(OH)6(PO4)6(HPO4)2 [J].
Guesdon, A. ;
Adam, L. ;
Raveau, B. .
SOLID STATE SCIENCES, 2011, 13 (08) :1584-1588
[9]   Modeling Chemical Kinetics in Solid State Reactions [J].
Huidobro, J. A. ;
Iglesias, I. ;
Alfonso, B. F. ;
Trobajo, C. ;
Garcia, J. R. .
COMPUTATIONAL MATHEMATICS, NUMERICAL ANALYSIS AND APPLICATIONS, 2017, 13 :229-233
[10]   Reducing the effects of noise in the calculation of activation energy by the Friedman method [J].
Huidobro, Jose A. ;
Iglesias, Isabel ;
Alfonso, Belen F. ;
Espina, Aranzazu ;
Trobajo, Camino ;
Garcia, Jose R. .
CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2016, 151 :146-152