Desiccation of plant tissues post-Agrobacterium infection enhances T-DNA delivery and increases stable transformation efficiency in wheat

被引:104
作者
Cheng, M
Hu, TC
Layton, J
Liu, CN
Fry, JE
机构
[1] Monsanto, Mystic, CT 06355
[2] Monsanto, St. Louis, MO 63198
[3] BASF Plant Science, Research Triangle Park, NC 17709
关键词
desiccation; Agrobacterium; transformation; wheat;
D O I
10.1079/IVP2003471
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Factors influencing the Agrobacterium-mediated transformation of both monocotyledonous and dicotyledonous plant species have been widely investigated. These factors include manipulating Agrobacterium strains and plasmids, growth conditions for vir gene induction, plant genotype, inoculation and eo-culture conditions, and the selection agents and their application regime. We report here a novel physical parameter during co-culture, desiccation of plant cells or tissues post-Agrobacterium infection, which greatly enhances transfer DNA (T-DNA) delivery and increases stable transformation efficiency in wheat. Desiccation during co-culture dramatically suppressed Agrobacterium growth, which is one of the factors known to favor plant cell recovery. Osmotic and abscisic acid treatments and desiccation prior to inoculation did not have the same enhancement effect as desiccation during co-culture on T-DNA delivery in wheat. An efficient transformation protocol has been developed based on desiccation and is suitable for both paromomycin and glyphosate selection. Southern analysis showed approximately 67% of transgenic wheat plants received a single copy of the transgene.
引用
收藏
页码:595 / 604
页数:10
相关论文
共 59 条
[1]  
Aldemita RR, 1996, PLANTA, V199, P612, DOI 10.1007/BF00195194
[2]   Factors influencing Agrobacterium-mediated transient expression of uidA in wheat inflorescence tissue [J].
Amoah, BK ;
Wu, H ;
Sparks, C ;
Jones, HD .
JOURNAL OF EXPERIMENTAL BOTANY, 2001, 52 (358) :1135-1142
[3]   An efficient protocol for sugarcane (Saccharum spp. L.) transformation mediated by Agrobacterium tumefaciens [J].
Arencibia, AD ;
Carmona, ER ;
Tellez, P ;
Chan, MT ;
Yu, SM ;
Trujillo, LE ;
Oramas, P .
TRANSGENIC RESEARCH, 1998, 7 (03) :213-222
[4]  
Armstrong CL, 1999, MAYDICA, V44, P101
[5]   MICROPROJECTILE BOMBARDMENT OF PLANT-TISSUES INCREASES TRANSFORMATION FREQUENCY BY AGROBACTERIUM-TUMEFACIENS [J].
BIDNEY, D ;
SCELONGE, C ;
MARTICH, J ;
BURRUS, M ;
SIMS, L ;
HUFFMAN, G .
PLANT MOLECULAR BIOLOGY, 1992, 18 (02) :301-313
[6]   Genetic transformation of wheat mediated by Agrobacterium tumefaciens [J].
Cheng, M ;
Fry, JE ;
Pang, SZ ;
Zhou, HP ;
Hironaka, CM ;
Duncan, DR ;
Conner, TW ;
Wan, YC .
PLANT PHYSIOLOGY, 1997, 115 (03) :971-980
[7]   Agrobacterium-transformed rice plants expressing synthetic cryIA(b) and cryIA(c) genes are highly toxic to striped stem borer and yellow stem borer [J].
Cheng, XY ;
Sardana, R ;
Kaplan, H ;
Altosaar, I .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (06) :2767-2772
[8]   AGROBACTERIUM-TUMEFACIENS DNA AND PS8 BACTERIOPHAGE DNA NOT DETECTED IN CROWN GALL TUMORS [J].
CHILTON, MD ;
CURRIER, TC ;
FARRAND, SK ;
BENDICH, AJ ;
GORDON, MP ;
NESTER, EW .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1974, 71 (09) :3672-3676
[9]   REGENERATION OF TRANSGENIC KALE (BRASSICA-OLERACEA VAR ACEPHALA), RAPE (BRASSICA-NAPUS) AND TURNIP (BRASSICA-CAMPESTRIS VAR RAPIFERA) PLANTS VIA AGROBACTERIUM-RHIZOGENES MEDIATED TRANSFORMATION [J].
CHRISTEY, MC ;
SINCLAIR, BK .
PLANT SCIENCE, 1992, 87 (02) :161-169
[10]  
Cornish K, 1990, ENV INJURY PLANTS, P89