On Crofton-Glaisher type relations and derivation of generating functions for Hermite polynomials including the multi-index case

被引:18
作者
Dattoli, G. [1 ]
Khan, Subuhi [2 ]
Ricci, P. E. [3 ]
机构
[1] ENEA, Ctr Ric Frascati, Unita Tecn Sci Tecnol Fis Avanzate, Grp Fis Teor & Matemat Applicata, I-00044 Frascati, Italy
[2] Aligarh Muslim Univ, Dept Math, Aligarh 202002, Uttar Pradesh, India
[3] Univ Roma La Sapienza, Dipartimento Matemat G Castelnuovo, I-00185 Rome, Italy
关键词
exponential operator; Hermite polynomials; Glaisher and Crofton rules;
D O I
10.1080/10652460701358984
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Glaisher rule is an operational identity involving the action of an exponential operator containing the second-order derivatives acting on an exponential function. We use the Crofton and monomiality formalism to derive generalized forms to the multi-dimensional case and show its usefulness in the derivation of old and new forms of generating functions for a wealth of Hermite polynomials families.
引用
收藏
页码:1 / 9
页数:9
相关论文
共 10 条
[1]  
Andrews L. C., 1985, SPECIAL FUNCTIONS EN
[2]  
[Anonymous], 1999, ADV SPECIAL FUNCTION
[3]  
Appell P., 1926, Fonctions Hypergeometriques et Hyperspheriques: Polynomes d'Hermite
[4]  
Crofton M.W., 1879, Q J MATH, V16, P323
[5]   Operational methods, fractional operators and special polynomials [J].
Dattoli, G .
APPLIED MATHEMATICS AND COMPUTATION, 2003, 141 (01) :151-159
[6]   Incomplete 2D Hermite polynomials: properties and applications [J].
Dattoli, G .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2003, 284 (02) :447-454
[7]  
Dattoli G, 1997, RIV NUOVO CIMENTO, V20, P1
[8]  
Roman S., 1984, Volume 111 of Pure and Applied Mathematics
[9]  
Srivastava H.M., 1984, a Treatise on Generating Functions
[10]   Hermite and Laguerre 2D polynomials [J].
Wünsche, A .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2001, 133 (1-2) :665-678