A new combined soliton solution of the modified Korteweg-de Vries equation

被引:0
作者
Wu, Jianping [1 ]
机构
[1] Zhengzhou Univ Aeronaut, Sch Sci, Zhengzhou 450046, Henan, Peoples R China
来源
PRAMANA-JOURNAL OF PHYSICS | 2020年 / 94卷 / 01期
关键词
Modified Korteweg-de Vries equation; combined soliton solution; soliton dynamics;
D O I
10.1007/s12043-020-01958-1
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, the Riemann-Hilbert problem of the modified Korteweg-de Vries (mKdV) equation is studied, from which a new combined soliton solution is obtained. In addition, to illustrate the dynamics of the new combined soliton solution, an algebra technique is developed to demonstrate the soliton interactions using Mathematica symbolic computations. The proposed method is effective in deriving and investigating new soliton solutions of the mKdV equation. The results also expand the understanding of the soliton structure of the mKdV equation.
引用
收藏
页数:9
相关论文
共 40 条
[31]   The effect of the negative particle velocity in a soliton gas within Korteweg-de Vries-type equations [J].
Shurgalina, E. G. ;
Pelinovsky, E. N. ;
Gorshkov, K. A. .
MOSCOW UNIVERSITY PHYSICS BULLETIN, 2017, 72 (05) :441-448
[32]   EXACT TRAVELING-WAVE SOLUTIONS FOR ONE-DIMENSIONAL MODIFIED KORTEWEG-DE VRIES EQUATION DEFINED ON CANTOR SETS [J].
Gao, Feng ;
Yang, Xiao-Jun ;
Ju, Yang .
FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2019, 27 (01)
[33]   Nonlinear stability of periodic traveling wave solutions to the Schrodinger and the modified Korteweg-de Vries equations [J].
Pava, Jaime Angulo .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 235 (01) :1-30
[34]   Complex behaviors and various soliton profiles of (2+1)-dimensional complex modified Korteweg-de-Vries Equation [J].
Mati ur Rahman ;
Yeliz Karaca ;
Mei Sun ;
Dumitru Baleanu ;
Wafa F. Alfwzan .
Optical and Quantum Electronics, 56
[35]   Complex behaviors and various soliton profiles of (2+1)-dimensional complex modified Korteweg-de-Vries Equation [J].
Rahman, Mati ur ;
Karaca, Yeliz ;
Sun, Mei ;
Baleanu, Dumitru ;
Alfwzan, Wafa F. .
OPTICAL AND QUANTUM ELECTRONICS, 2024, 56 (05)
[36]   NON-DIFFERENTIABLE SOLUTIONS OF A FAMILY OF MODIFIED KORTEWEG-de VRIES EQUATIONS WITHIN LOCAL FRACTIONAL DERIVATIVE [J].
Yang, Yong-Ju .
THERMAL SCIENCE, 2021, 25 (03) :2227-2234
[37]   Semi-discrete local and nonlocal Frobenius-coupled complex modified Korteweg-de Vries equations [J].
Zhao, Qiulan ;
Cheng, Hongbiao ;
Li, Xinyue .
CHINESE JOURNAL OF PHYSICS, 2023, 85 :228-240
[38]   Bilinear forms, bilinear Backlund transformation, soliton and breather interactions of a damped variable-coefficient fifth-order modified Korteweg-de Vries equation for the surface waves in a strait or large channel [J].
Li, Liu-Qing ;
Gao, Yi-Tian ;
Yu, Xin ;
Jia, Ting-Ting ;
Hu, Lei ;
Zhang, Cai-Yin .
CHINESE JOURNAL OF PHYSICS, 2022, 77 :915-926
[39]   THE FIRST INTEGRAL METHOD FOR THE (3+1)-DIMENSIONAL MODIFIED KORTEWEG-DE VRIES-ZAKHAROV-KUZNETSOV AND HIROTA EQUATIONS [J].
Baleanu, D. ;
Killic, B. ;
Ugurlu, Y. ;
Inc, M. .
ROMANIAN JOURNAL OF PHYSICS, 2015, 60 (1-2) :111-125
[40]   Some new soliton solutions to the (3 + 1)-dimensional generalized KdV-ZK equation via enhanced modified extended tanh-expansion approach [J].
Ashraf R. ;
Ashraf F. ;
Akgül A. ;
Ashraf S. ;
Alshahrani B. ;
Mahmoud M. ;
Weera W. .
Alexandria Engineering Journal, 2023, 69 :303-309