A new combined soliton solution of the modified Korteweg-de Vries equation

被引:0
作者
Wu, Jianping [1 ]
机构
[1] Zhengzhou Univ Aeronaut, Sch Sci, Zhengzhou 450046, Henan, Peoples R China
来源
PRAMANA-JOURNAL OF PHYSICS | 2020年 / 94卷 / 01期
关键词
Modified Korteweg-de Vries equation; combined soliton solution; soliton dynamics;
D O I
10.1007/s12043-020-01958-1
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, the Riemann-Hilbert problem of the modified Korteweg-de Vries (mKdV) equation is studied, from which a new combined soliton solution is obtained. In addition, to illustrate the dynamics of the new combined soliton solution, an algebra technique is developed to demonstrate the soliton interactions using Mathematica symbolic computations. The proposed method is effective in deriving and investigating new soliton solutions of the mKdV equation. The results also expand the understanding of the soliton structure of the mKdV equation.
引用
收藏
页数:9
相关论文
共 40 条
[21]   Construction, Lax integrability, bilinearization and multi-soliton solutions of a defocusing/focusing nonlocal extended modified Korteweg-de Vries equation [J].
Liu, Hao-Dong ;
Tian, Bo ;
Gao, Xiao-Tian ;
Shan, Hong-Wen .
PHYSICS LETTERS A, 2025, 547
[22]   Undular bores and the initial-boundary value problem for the modified Korteweg-de Vries equation [J].
Marchant, T. R. .
WAVE MOTION, 2008, 45 (04) :540-555
[23]   Asymptotics in Fourier space of self-similar solutions to the modified Korteweg-de Vries equation [J].
Correia, Simao ;
Cote, Raphael ;
Vega, Luis .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2020, 137 :101-142
[24]   The Modified Korteweg-de Vries Equation on the Half-Line with a Sine-Wave as Dirichlet Datum [J].
Guenbo Hwang ;
A. S. Fokas .
Journal of Nonlinear Mathematical Physics, 2013, 20 :135-157
[25]   The Modified Korteweg-de Vries Equation on the Half-Line with a Sine-Wave as Dirichlet Datum [J].
Hwang, Guenbo ;
Fokas, A. S. .
JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2013, 20 (01) :135-157
[26]   Robust inverse scattering method to the complex modified Korteweg-de Vries equation with nonzero background condition [J].
Zhang, Yong ;
Dong, Huan-He .
PHYSICS LETTERS A, 2022, 449
[27]   On the existence of periodic solutions to the modified Korteweg-de Vries equation belowH1/2(T) [J].
Schippa, Robert .
JOURNAL OF EVOLUTION EQUATIONS, 2020, 20 (03) :725-776
[28]   Derivation of a modified Korteweg-de Vries model for few-optical-cycles soliton propagation from a general Hamiltonian [J].
Triki, H. ;
Leblond, H. ;
Mihalache, D. .
OPTICS COMMUNICATIONS, 2012, 285 (13-14) :3179-3186
[29]   AN EXPLANATION OF LOCAL FRACTIONAL VARIATIONAL ITERATION METHOD AND ITS APPLICATION TO LOCAL FRACTIONAL MODIFIED KORTEWEG-DE VRIES EQUATION [J].
Wang, Yan ;
Zhang, Yu-Feng ;
Liu, Zhen-Jiang .
THERMAL SCIENCE, 2018, 22 (01) :23-27
[30]   Modified Korteweg-de Vries theory of monotonic double layers in plasmas with negative ions [J].
Kim, TH .
JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2006, 48 (01) :150-153