Legume-based cropping systems have reduced carbon and nitrogen losses

被引:723
作者
Drinkwater, LE [1 ]
Wagoner, P [1 ]
Sarrantonio, M [1 ]
机构
[1] Rodale Inst, Kutztown, PA 19530 USA
关键词
D O I
10.1038/24376
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In agricultural systems, optimization of carbon and nitrogen cycling through soil organic matter can improve soil fertility and yields while reducing negative environmental impact. A basic tenet that has guided the management of soil organic matter for decades has been that equilibrium levels of carbon and nitrogen are controlled by their net input and that qualitative differences in these inputs are relatively unimportant(1-3). This contrasts with natural ecosystems in which there are significant effects of species composition and litter quality on carbon and nitrogen cycling(4,5). Here we report the net balances of carbon and nitrogen from a 15-year study in which three distinct maize/soybean agroecosystems are compared. Quantitative differences in net primary productivity and nitrogen balance across agroecosystems do not account for the observed changes in soil carbon and nitrogen. We suggest that the use of low carbon-to-nitrogen organic residues to maintain soil fertility, combined with greater temporal diversity in cropping sequences, significantly increases the retention of soil carbon and nitrogen, which has important implications for regional and global carbon and nitrogen budgets, sustained production, and environmental quality.
引用
收藏
页码:262 / 265
页数:4
相关论文
共 29 条
[1]   EFFECTS OF CROPPING ON CARBOHYDRATE CONTENT AND WATER-STABLE AGGREGATION OF A CLAY SOIL [J].
ANGERS, DA ;
MEHUYS, GR .
CANADIAN JOURNAL OF SOIL SCIENCE, 1989, 69 (02) :373-380
[2]   TRANSFORMATIONS IN SOIL AND AVAILABILITY TO PLANTS OF N-15 APPLIED AS INORGANIC FERTILIZER AND LEGUME RESIDUES [J].
AZAM, F ;
MALIK, KA ;
SAJJAD, MI .
PLANT AND SOIL, 1985, 86 (01) :3-13
[3]  
CHOU TH, 1993, THESIS MICHIGAN STAT
[4]  
DeLuca TH, 1996, BIOL FERT SOILS, V23, P140
[5]   FUNDAMENTAL DIFFERENCES BETWEEN CONVENTIONAL AND ORGANIC TOMATO AGROECOSYSTEMS IN CALIFORNIA [J].
DRINKWATER, LE ;
LETOURNEAU, DK ;
WORKNEH, F ;
VANBRUGGEN, AHC ;
SHENNAN, C .
ECOLOGICAL APPLICATIONS, 1995, 5 (04) :1098-1112
[6]   Fertilization effects on soil organic matter turnover and corn residue C storage [J].
Gregorich, EG ;
Ellert, BH ;
Drury, CF ;
Liang, BC .
SOIL SCIENCE SOCIETY OF AMERICA JOURNAL, 1996, 60 (02) :472-476
[7]   TURNOVER OF SOIL ORGANIC-MATTER AND STORAGE OF CORN RESIDUE CARBON ESTIMATED FROM NATURAL C-13 ABUNDANCE [J].
GREGORICH, EG ;
ELLERT, BH ;
MONREAL, CM .
CANADIAN JOURNAL OF SOIL SCIENCE, 1995, 75 (02) :161-167
[8]  
HANSON JC, 1996, J ALT AGR, V12, P2
[9]   DENSITY FRACTIONS OF SOIL MACROORGANIC MATTER AND MICROBIAL BIOMASS AS PREDICTORS OF C-MINERALIZATION AND N-MINERALIZATION [J].
HASSINK, J .
SOIL BIOLOGY & BIOCHEMISTRY, 1995, 27 (08) :1099-1108
[10]   CROP-ROTATION AND TILLAGE EFFECTS ON SOIL ORGANIC-CARBON AND NITROGEN [J].
HAVLIN, JL ;
KISSEL, DE ;
MADDUX, LD ;
CLAASSEN, MM ;
LONG, JH .
SOIL SCIENCE SOCIETY OF AMERICA JOURNAL, 1990, 54 (02) :448-452