Algebraic Bethe ansatz for the elliptic quantum group E tau,eta(sl(2))

被引:82
|
作者
Felder, G [1 ]
Varchenko, A [1 ]
机构
[1] UNIV N CAROLINA,DEPT MATH,CHAPEL HILL,NC 27599
基金
美国国家科学基金会;
关键词
integrable models; eight-vertex model; elliptic quantum groups; spin chains; Rui[!text type='js']js[!/text]enaars models; Bethe ansatz;
D O I
10.1016/S0550-3213(96)00461-0
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
To each representation of the elliptic quantum group E(tau,eta)(sl(2)) is associated a family of commuting transfer matrices. We give common eigenvectors by a version of the algebraic Bethe ansatz method, Special cases of this construction give eigenvectors for IRF models, for the eight-vertex model and for the two-body Ruijsenaars operator. The latter is a q-deformation of Hermite's solution of the Lame equation.
引用
收藏
页码:485 / 503
页数:19
相关论文
共 50 条
  • [1] Representation of the boundary elliptic quantum group BE tau,eta (sl(2)) and the Bethe ansatz
    Fan, H
    Hou, BY
    Shi, KJ
    NUCLEAR PHYSICS B, 1997, 496 (03) : 551 - 570
  • [2] Algebraic Bethe ansatz for the elliptic quantum group Eτ,η(A2(2))
    Manojlovic, Nenad
    Nagy, Zoltan
    JOURNAL OF MATHEMATICAL PHYSICS, 2007, 48 (12)
  • [3] On representations of the elliptic quantum group E(tau,eta)(sl(2))
    Felder, G
    Varchenko, A
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1996, 181 (03) : 741 - 761
  • [4] Algebraic Bethe ansatz for the elliptic quantum group Eτ,η(sln) and its applications
    Hou, BY
    Sasaki, R
    Yang, WL
    NUCLEAR PHYSICS B, 2003, 663 (03) : 467 - 486
  • [5] Creation operators and algebraic Bethe ansatz for the elliptic quantum group Eτ,η(so3)
    Manojlovic, Nenand
    Nagy, Zoltan
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (15) : 4181 - 4191
  • [6] Algebraic Bethe ansatz for the Sl(2) Gaudin model with boundary
    Cirilo Antonio, N.
    Manojlovic, N.
    Ragoucy, E.
    Salom, I.
    NUCLEAR PHYSICS B, 2015, 893 : 305 - 331
  • [7] Algebraic Bethe Ansatz for the Trigonometric sl(2) Gaudin Model with Triangular Boundary
    Manojlovic, Nenad
    Salom, Igor
    SYMMETRY-BASEL, 2020, 12 (03):
  • [8] The algebraic Bethe ansatz and quantum integrable systems
    Slavnov, N. A.
    RUSSIAN MATHEMATICAL SURVEYS, 2007, 62 (04) : 727 - 766
  • [9] Spiky strings in the SL(2) Bethe Ansatz
    Freyhult, L.
    Kruczenski, M.
    Tirziu, A.
    6TH INTERNATIONAL SYMPOSIUM ON QUANTUM THEORY AND SYMMETRIES (QTS6), 2013, 462
  • [10] Dressing phase in the SL(2) Bethe ansatz
    Kruczenski, M.
    Tirziu, A.
    PHYSICAL REVIEW D, 2009, 80 (08):