Absence of Critical Points of Solutions to the Helmholtz Equation in 3D

被引:5
作者
Alberti, Giovanni S. [1 ]
机构
[1] Ecole Normale Super, Dept Math & Applicat, 45 Rue Ulm, F-75005 Paris, France
基金
英国工程与自然科学研究理事会;
关键词
LOCAL NONZERO CONSTRAINTS; ELLIPTIC-EQUATIONS; GENERIC PROPERTIES; EIGENFUNCTIONS; HOMOGENIZATION; COEFFICIENTS; KNOWLEDGE; SETS;
D O I
10.1007/s00205-016-1013-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The focus of this paper is to show the absence of critical points for the solutions to the Helmholtz equation in a bounded domain , given by ' {-div(a del u(omega)(g)) - omega qu(omega)(g) = 0 in Omega, u(omega)(g) = g on partial derivative Omega. We prove that for an admissible g there exists a finite set of frequencies K in a given interval and an open cover (Omega) over bar = boolean OR(omega is an element of K) Omega(omega) such that vertical bar del u(omega)(g)(x)vertical bar > 0for every omega is an element of K and x is an element of Omega(omega). The set K is explicitly constructed. If the spectrum of this problem is simple, which is true for a generic domain Omega, the admissibility condition on g is a generic property.
引用
收藏
页码:879 / 894
页数:16
相关论文
共 44 条
[2]  
Alberti G.S., LECT ELLIPTIC UNPUB
[3]  
Alberti G.S., 2013, SEM EQ DER PART 2013, DOI [10.5802/slsedp.50, DOI 10.5802/SLSEDP.50]
[4]   On local non-zero constraints in PDE with analytic coefficients [J].
Alberti, Giovanni S. ;
Capdeboscq, Yves .
IMAGING, MULTI-SCALE AND HIGH CONTRAST PARTIAL DIFFERENTIAL EQUATIONS, 2016, 660 :89-97
[5]   Multi-frequency acousto-electromagnetic tomography [J].
Alberti, Giovanni S. ;
Ammari, Habib ;
Ruan, Kaixi .
PANORAMA OF MATHEMATICS: PURE AND APPLIED, 2016, 658 :67-+
[6]   Enforcing Local Non-Zero Constraints in PDEs and Applications to Hybrid Imaging Problems [J].
Alberti, Giovanni S. .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2015, 40 (10) :1855-1883
[7]   On multiple frequency power density measurements II. The full Maxwell's equations [J].
Alberti, Giovanni S. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 258 (08) :2767-2793
[8]   On multiple frequency power density measurements [J].
Alberti, Giovanni S. .
INVERSE PROBLEMS, 2013, 29 (11)
[9]   ELLIPTIC-EQUATIONS IN DIVERGENCE FORM, GEOMETRIC CRITICAL-POINTS OF SOLUTIONS, AND STEKLOFF EIGENFUNCTIONS [J].
ALESSANDRINI, G ;
MAGNANINI, R .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1994, 25 (05) :1259-1268
[10]   QUANTITATIVE ESTIMATES ON JACOBIANS FOR HYBRID INVERSE PROBLEMS [J].
Alessandrini, G. ;
Nesi, V. .
BULLETIN OF THE SOUTH URAL STATE UNIVERSITY SERIES-MATHEMATICAL MODELLING PROGRAMMING & COMPUTER SOFTWARE, 2015, 8 (03) :25-41