Neighbor Set for the Existence of (g, f, n)-Critical Graphs

被引:0
作者
Liu, Hongxia [1 ,2 ]
Liu, Guizhen [2 ]
机构
[1] Yantai Univ, Sch Math & Informat Sci, Yantai 264005, Shandong, Peoples R China
[2] Shandong Univ, Sch Math, Jinan 250100, Shandong, Peoples R China
关键词
Graph; (g; f)-factor; f; n)-critical graph; neighbor set; SUFFICIENT CONDITION;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let C be a graph of order p. Let g(x) and f (x) be two nonnegative integer-valued functions defined on V(G) with g(x) <= f (x) for any x is an element of V(C). A graph G is said to be (g, f, n)-critical if G - N has a (g, f)-factor for each N subset of V (G) with vertical bar N vertical bar = n. If g(x) a and f(x) b for all x is an element of V(G), then a (g, f,n)-critical graph is an (a,b,n)-critical graph. In this paper, several sufficient conditions in terms of neighbor set for graphs to be (a,5, n)-critical or (g, f, n)-critical are given.
引用
收藏
页码:39 / 49
页数:11
相关论文
共 50 条
  • [21] A Sufficient Condition for the Existence of Restricted Fractional (g, f)-Factors in Graphs
    Zhou, S.
    Sun, Z.
    Pan, Q.
    PROBLEMS OF INFORMATION TRANSMISSION, 2020, 56 (04) : 332 - 344
  • [22] A remark about fractional (f, n)-critical graphs
    Zhou, Sizhong
    Bian, Qiuxiang
    Liu, Hongxia
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2011, 19 (01): : 365 - 371
  • [23] Neighborhood condition for all fractional (g, f, n′, m)-critical deleted graphs
    Gao, Wei
    Zhang, Yunqing
    Chen, Yaojun
    OPEN PHYSICS, 2018, 16 (01): : 544 - 553
  • [24] NEW ISOLATED TOUGHNESS CONDITION FOR FRACTIONAL (g, f, n) - CRITICAL GRAPH
    Gao, Wei
    Wang, Weifan
    COLLOQUIUM MATHEMATICUM, 2017, 147 (01) : 55 - 65
  • [25] On fractional (g, f, m)-deleted graphs
    Liu, Shuli
    2011 INTERNATIONAL CONFERENCE ON COMPUTERS, COMMUNICATIONS, CONTROL AND AUTOMATION (CCCA 2011), VOL II, 2010, : 249 - 250
  • [26] A THEOREM ON FRACTIONAL ID-(g, f)-FACTOR-CRITICAL GRAPHS
    Zhou, Sizhong
    Sun, Zhiren
    Xu, Yang
    CONTRIBUTIONS TO DISCRETE MATHEMATICS, 2015, 10 (02) : 31 - 38
  • [27] A note on fractional (g, f, m)-deleted graphs
    Gao, Wei
    Wang, Weifan
    ARS COMBINATORIA, 2014, 113A : 129 - 137
  • [28] Remarks on restricted fractional (g, f )-factors in graphs
    Zhou, Sizhong
    DISCRETE APPLIED MATHEMATICS, 2024, 354 : 271 - 278
  • [29] A result on restricted fractional (g,f)-factors in graphs
    Zhou, Sizhong
    BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2020, 63 (04): : 407 - 416
  • [30] Fractional (g, f)-factors in K1,r-free graphs
    Wu, Jie
    Zhou, Sizhong
    UTILITAS MATHEMATICA, 2016, 99 : 241 - 249