Neighbor Set for the Existence of (g, f, n)-Critical Graphs

被引:0
|
作者
Liu, Hongxia [1 ,2 ]
Liu, Guizhen [2 ]
机构
[1] Yantai Univ, Sch Math & Informat Sci, Yantai 264005, Shandong, Peoples R China
[2] Shandong Univ, Sch Math, Jinan 250100, Shandong, Peoples R China
关键词
Graph; (g; f)-factor; f; n)-critical graph; neighbor set; SUFFICIENT CONDITION;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let C be a graph of order p. Let g(x) and f (x) be two nonnegative integer-valued functions defined on V(G) with g(x) <= f (x) for any x is an element of V(C). A graph G is said to be (g, f, n)-critical if G - N has a (g, f)-factor for each N subset of V (G) with vertical bar N vertical bar = n. If g(x) a and f(x) b for all x is an element of V(G), then a (g, f,n)-critical graph is an (a,b,n)-critical graph. In this paper, several sufficient conditions in terms of neighbor set for graphs to be (a,5, n)-critical or (g, f, n)-critical are given.
引用
收藏
页码:39 / 49
页数:11
相关论文
共 50 条
  • [11] A sufficient condition for the existence of fractional (g, f, n)-critical covered graphs
    Wu, Jie
    FILOMAT, 2024, 38 (06) : 2177 - 2183
  • [12] A degree condition for fractional (g, f, n)-critical covered graphs
    Lv, Xiangyang
    AIMS MATHEMATICS, 2020, 5 (02): : 872 - 878
  • [13] On (g, f, n)-critical graphs
    Li, JX
    Matsuda, H
    ARS COMBINATORIA, 2006, 78 : 71 - 82
  • [14] TIGHT TOUGHNESS CONDITION FOR FRACTIONAL (g, f, n)-CRITICAL GRAPHS
    Gao, Wei
    Liang, Li
    Xu, Tianwei
    Zhou, Juxiang
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2014, 51 (01) : 55 - 65
  • [15] On fractional (f, n)-critical graphs
    Zhou, Sizhong
    Shen, Qiqing
    INFORMATION PROCESSING LETTERS, 2009, 109 (14) : 811 - 815
  • [16] Degree Conditions for Fractional (g, f, n′, m)-Critical Deleted Graphs and Fractional ID-(g, f, m)-Deleted Graphs
    Gao, Wei
    Liang, Li
    Xu, Tianwei
    Zhou, Juxiang
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2016, 39 : S315 - S330
  • [17] A TIGHT NEIGHBORHOOD UNION CONDITION ON FRACTIONAL (g, f,n′,m)-CRITICAL DELETED GRAPHS
    Gao, Wei
    Wang, Weifan
    COLLOQUIUM MATHEMATICUM, 2017, 149 (02) : 291 - 298
  • [18] An existence theorem on fractional ID-(g, f)-factor-critical covered graphs
    Jiang, Jiashang
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2022, 19 (01) : 31 - 35
  • [19] A New Sufficient Condition for a Graph To Be (g, f, n)-Critical
    Zhou, Sizhong
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2010, 53 (02): : 378 - 384
  • [20] Toughness and Existence of Fractional (g, f)-factors in Graphs
    Liu, Shuli
    Cai, Jiansheng
    ARS COMBINATORIA, 2009, 93 : 305 - 311