Neighbor Set for the Existence of (g, f, n)-Critical Graphs

被引:0
|
作者
Liu, Hongxia [1 ,2 ]
Liu, Guizhen [2 ]
机构
[1] Yantai Univ, Sch Math & Informat Sci, Yantai 264005, Shandong, Peoples R China
[2] Shandong Univ, Sch Math, Jinan 250100, Shandong, Peoples R China
关键词
Graph; (g; f)-factor; f; n)-critical graph; neighbor set; SUFFICIENT CONDITION;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let C be a graph of order p. Let g(x) and f (x) be two nonnegative integer-valued functions defined on V(G) with g(x) <= f (x) for any x is an element of V(C). A graph G is said to be (g, f, n)-critical if G - N has a (g, f)-factor for each N subset of V (G) with vertical bar N vertical bar = n. If g(x) a and f(x) b for all x is an element of V(G), then a (g, f,n)-critical graph is an (a,b,n)-critical graph. In this paper, several sufficient conditions in terms of neighbor set for graphs to be (a,5, n)-critical or (g, f, n)-critical are given.
引用
收藏
页码:39 / 49
页数:11
相关论文
共 50 条
  • [1] An existence theorem on fractional (g, f, n)-critical graphs
    Sun, Zhiren
    Zhou, Sizhong
    UTILITAS MATHEMATICA, 2017, 102 : 105 - 112
  • [2] Independence Number and Minimum Degree for the Existence of (g, f, n)-Critical Graphs
    Zhou, Sizhong
    Pan, Quanru
    Xu, Yang
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2011, 19 (01): : 373 - 381
  • [3] Binding number and minimum degree for the existence of (g,f,n)-critical graphs
    Liu H.
    Liu G.
    Journal of Applied Mathematics and Computing, 2009, 29 (1-2) : 207 - 216
  • [4] A RESULT ON (g, f, n)-CRITICAL GRAPHS
    Zhou, Sizhong
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2009, 17 (02): : 265 - 276
  • [5] On fractional (g, f, n)-critical graphs
    Liu, Hongxia
    Liu, Guizhen
    ARS COMBINATORIA, 2010, 97 : 183 - 191
  • [6] On fractional (g, f, n)-critical graphs
    Liu, Shuli
    2011 INTERNATIONAL CONFERENCE ON COMPUTERS, COMMUNICATIONS, CONTROL AND AUTOMATION (CCCA 2011), VOL II, 2010, : 242 - 245
  • [7] Minimum degree of graphs and (g,f,n)-critical graphs
    Zhou, Sizhong
    IMECS 2008: INTERNATIONAL MULTICONFERENCE OF ENGINEERS AND COMPUTER SCIENTISTS, VOLS I AND II, 2008, : 1871 - 1873
  • [8] On toughness and fractional (g, f, n)-critical graphs
    Liu, Shuli
    INFORMATION PROCESSING LETTERS, 2010, 110 (10) : 378 - 382
  • [9] Some Sufficient Conditions for Graphs to Be (g, f, n)-Critical Graphs
    Zhou, Sizhong
    Liu, Hongxia
    Duan, Ziming
    IAENG TRANSACTIONS ON ENGINEERING TECHNOLOGIES VOL 1, 2009, 1089 : 178 - +
  • [10] BINDING NUMBERS AND FRACTIONAL (g, f, n)-CRITICAL GRAPHS
    Zhou, Sizhong
    Sun, Zhiren
    JOURNAL OF APPLIED MATHEMATICS & INFORMATICS, 2016, 34 (5-6): : 435 - 441