A Positive Stable Frailty Model for Clustered Failure Time Data with Covariate-Dependent Frailty

被引:10
作者
Liu, Dandan [1 ]
Kalbfleisch, John D. [1 ]
Schaubel, Douglas E. [1 ]
机构
[1] Univ Michigan, Dept Biostat, Ann Arbor, MI 48109 USA
基金
美国国家卫生研究院;
关键词
Bridge distribution; Clustered failure times; Covariate-dependent frailty; Cox model; Positive stable frailty; Shared frailty; CLAYTON-OAKES MODEL; PROPORTIONAL HAZARDS; LIKELIHOOD ESTIMATION; REGRESSION-MODELS; DISTRIBUTIONS; ESTIMATOR;
D O I
10.1111/j.1541-0420.2010.01444.x
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this article, we propose a positive stable shared frailty Cox model for clustered failure time data where the frailty distribution varies with cluster-level covariates. The proposed model accounts for covariate-dependent intracluster correlation and permits both conditional and marginal inferences. We obtain marginal inference directly from a marginal model, then use a stratified Cox-type pseudo-partial likelihood approach to estimate the regression coefficient for the frailty parameter. The proposed estimators are consistent and asymptotically normal and a consistent estimator of the covariance matrix is provided. Simulation studies show that the proposed estimation procedure is appropriate for practical use with a realistic number of clusters. Finally, we present an application of the proposed method to kidney transplantation data from the Scientific Registry of Transplant Recipients.
引用
收藏
页码:8 / 17
页数:10
相关论文
共 50 条
[41]   Semiparametric transformation models with random effects for clustered failure time data [J].
Zeng, Donglin ;
Lin, D. Y. ;
Lin, Xihong .
STATISTICA SINICA, 2008, 18 (01) :355-377
[42]   SAMPLE SIZE DETERMINATION IN SHARED FRAILTY MODELS FOR MULTIVARIATE TIME-TO-EVENT DATA [J].
Chen, Liddy M. ;
Ibrahim, Joseph G. ;
Chu, Haitao .
JOURNAL OF BIOPHARMACEUTICAL STATISTICS, 2014, 24 (04) :908-923
[43]   Semiparametric spatial model for interval-censored data with time-varying covariate effects [J].
Zhang, Yue ;
Zhang, Bin .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2018, 123 :146-156
[44]   A FRAILTY MODEL APPROACH FOR REGRESSION ANALYSIS OF BIVARIATE INTERVAL-CENSORED SURVIVAL DATA [J].
Wen, Chi-Chung ;
Chen, Yi-Hau .
STATISTICA SINICA, 2013, 23 (01) :383-408
[45]   A Gamma-frailty proportional hazards model for bivariate interval-censored data [J].
Gamage, Prabhashi W. Withana ;
McMahan, Christopher S. ;
Wang, Lianming ;
Tu, Wanzhu .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2018, 128 :354-366
[46]   Analysis of recurrent events with an associated informative dropout time: Application of the joint frailty model [J].
Rogers, Jennifer K. ;
Yaroshinsky, Alex ;
Pocock, Stuart J. ;
Stokar, David ;
Pogoda, Janice .
STATISTICS IN MEDICINE, 2016, 35 (13) :2195-2205
[47]   Semiparametric estimation of a nested random effects model for the analysis of multi-level clustered failure time data [J].
Shih, Joanna H. ;
Lu, Shou-En .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2009, 53 (11) :3864-3871
[48]   ROBUST MIXED EFFECTS MODEL FOR CLUSTERED FAILURE TIME DATA: APPLICATION TO HUNTINGTON'S DISEASE EVENT MEASURES [J].
Garcia, Tanya P. ;
Ma, Yanyuan ;
Marder, Karen ;
Wang, Yuanjia .
ANNALS OF APPLIED STATISTICS, 2017, 11 (02) :1085-1116
[49]   Bayesian non-parametric frailty model for dependent competing risks in a repairable systems framework [J].
Almeida, Marco Pollo ;
Paixao, Rafael S. ;
Ramos, Pedro L. ;
Tomazella, Vera ;
Louzada, Francisco ;
Ehlers, Ricardo S. .
RELIABILITY ENGINEERING & SYSTEM SAFETY, 2020, 204
[50]   Case-cohort studies for clustered failure time data with a cure fraction [J].
Xie, Ping ;
Han, Bo ;
Wang, Xiaoguang .
STATISTICAL PAPERS, 2024, 65 (03) :1309-1336