A new approach to integrable theories in any dimension

被引:101
作者
Alvarez, O
Ferreira, LA
Guillen, JS
机构
[1] Univ Miami, Dept Phys, Coral Gables, FL 33124 USA
[2] UNESP, Inst Fis Teor, BR-01405900 Sao Paulo, Brazil
[3] Univ Santiago, Fac Fis, Dept Fis Particulas, E-15706 Santiago, Spain
基金
美国国家科学基金会;
关键词
zero curvature; general dimensions; integrability; new solutions;
D O I
10.1016/S0550-3213(98)00400-3
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
The zero curvature representation for two-dimensional integrable models is generalized to spacetimes of dimension d + 1 by the introduction of a d-form connection. The new generalized zero curvature conditions can be used to represent the equations of motion of some relativistic invariant field theories of physical interest in 2 + 1 dimensions (BF theories, Chern-Simons, 2 + 1 gravity and the CP1 model) and 3 + 1 dimensions (self-dual Yang-Mills theory and the Bogomolny equations). Our approach leads to new methods of constructing conserved currents and solutions. In a submodel of the 2 + 1-dimensional CP1 model, we explicitly construct an infinite number of previously unknown non-trivial conserved currents. For each positive integer spin representation of sl(2) we construct 2j + 1 conserved currents leading to 2j + 1 Lorentz scalar charges. (C) 1998 Elsevier Science B.V.
引用
收藏
页码:689 / 736
页数:48
相关论文
共 35 条
[1]  
AREFEVA Y, 1980, THEOR MATH PHYS, V43, P353
[2]   AFFINE SOLITONS - A RELATION BETWEEN TAU-FUNCTIONS, DRESSING AND BACKLUND-TRANSFORMATIONS [J].
BABELON, O ;
BERNARD, D .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1993, 8 (03) :507-543
[3]   DRESSING SYMMETRIES [J].
BABELON, O ;
BERNARD, D .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 149 (02) :279-306
[4]   DRESSING TRANSFORMATIONS AND THE ORIGIN OF THE QUANTUM GROUP SYMMETRIES [J].
BABELON, O ;
BERNARD, D .
PHYSICS LETTERS B, 1991, 260 (1-2) :81-86
[5]   YANG-MILLS EQUATIONS AS INVERSE SCATTERING PROBLEM [J].
BELAVIN, AA ;
ZAKHAROV, VE .
PHYSICS LETTERS B, 1978, 73 (01) :53-57
[6]  
BELAVIN AA, 1975, JETP LETT+, V22, P245
[7]   TOPOLOGICAL FIELD-THEORY [J].
BIRMINGHAM, D ;
BLAU, M ;
RAKOWSKI, M ;
THOMPSON, G .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1991, 209 (4-5) :129-340
[8]  
BOGOMOLNYI EB, 1976, SOV J NUCL PHYS+, V24, P449
[9]   EXACT COMPUTATION OF LOOP AVERAGES IN 2-DIMENSIONAL YANG-MILLS THEORY [J].
BRALIC, NE .
PHYSICAL REVIEW D, 1980, 22 (12) :3090-3103
[10]  
Date E., 1982, PUBL RIMS, V18, P1077, DOI DOI 10.2977/PRIMS/1195183297