Pediatric Seizure Prediction in Scalp EEG Using a Multi-Scale Neural Network With Dilated Convolutions

被引:40
作者
Gao, Yikai [1 ]
Chen, Xun [2 ,3 ]
Liu, Aiping [1 ,3 ]
Liang, Deng [1 ]
Wu, Le [1 ]
Qian, Ruobing [2 ]
Xie, Hongtao [1 ]
Zhang, Yongdong [1 ]
机构
[1] Univ Sci & Technol China USTC, Sch Informat Sci & Technol, Hefei 230027, Peoples R China
[2] Univ Sci & Technol China, Affliated Hosp USTC 1, Div Life Sci & Med, Dept Neurosurg,Epilepsy Ctr, Hefei 230001, Anhui, Peoples R China
[3] Univ Sci & Technol China, Inst Adv Technol, USTC IAT Huami Joint Lab Brain Machine Intelligen, Hefei 230088, Peoples R China
关键词
Electroencephalography; Convolution; Feature extraction; Brain modeling; Kernel; Scalp; Epilepsy; Dilated convolution; multi-scale; patient-specific; scalp electroencephalogram (EEG); seizure prediction; EPILEPTIC SEIZURES;
D O I
10.1109/JTEHM.2022.3144037
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Objective: Epileptic seizure prediction based on scalp electroencephalogram (EEG) is of great significance for improving the quality of life of patients with epilepsy. In recent years, a number of studies based on deep learning methods have been proposed to address this issue and achieve excellent performance. However, most studies on epileptic seizure prediction by EEG fail to take full advantage of temporal-spatial multi-scale features of EEG signals, while EEG signals carry information in multiple temporal and spatial scales. To this end, in this study, we proposed an end-to-end framework by using a temporal-spatial multi-scale convolutional neural network with dilated convolutions for patient-specific seizure prediction. Methods: Specifically, the model divides the EEG processing pipeline into two stages: the temporal multi-scale stage and the spatial multi-scale stage. In each stage, we firstly extract the multi-scale features along the corresponding dimension. A dilated convolution block is then conducted on these features to expand our model's receptive fields further and systematically aggregate global information. Furthermore, we adopt a feature-weighted fusion strategy based on an attention mechanism to achieve better feature fusion and eliminate redundancy in the dilated convolution block. Results: The proposed model obtains an average sensitivity of 93.3%, an average false prediction rate of 0.007 per hour, and an average proportion of time-in-warning of 6.3% testing in 16 patients from the CHB-MIT dataset with the leave-one-out method. Conclusion: Our model achieves superior performance in comparison to state-of-the-art methods, providing a promising solution for EEG-based seizure prediction.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Multi-scale attention-based lightweight network with dilated convolutions for infrared and visible image fusion
    Fuquan Li
    Yonghui Zhou
    YanLi Chen
    Jie Li
    ZhiCheng Dong
    Mian Tan
    Complex & Intelligent Systems, 2024, 10 : 705 - 719
  • [22] A Multi-View Multi-Scale Neural Network for Multi-Label ECG Classification
    Yang, Shunxiang
    Lian, Cheng
    Zeng, Zhigang
    Xu, Bingrong
    Zang, Junbin
    Zhang, Zhidong
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2023, 7 (03): : 648 - 660
  • [23] MMDN: Multi-Scale and Multi-Distillation Dilated Network for Pansharpening
    Tu, Wei
    Yang, Yong
    Huang, Shuying
    Wan, Weiguo
    Gan, Lixin
    Lu, Hangyuan
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [24] A Dynamic Multi-Scale Network for EEG Signal Classification
    Zhang, Guokai
    Luo, Jihao
    Han, Letong
    Lu, Zhuyin
    Hua, Rong
    Chen, Jianqing
    Che, Wenliang
    FRONTIERS IN NEUROSCIENCE, 2021, 14
  • [25] Retinal Vessels Segmentation Based on Dilated Multi-Scale Convolutional Neural Network
    Jiang, Yun
    Tan, Ning
    Peng, Tingting
    Zhang, Hai
    IEEE ACCESS, 2019, 7 : 76342 - 76352
  • [26] Deep Multi-scale Feature Fusion Convolutional Neural Network for Automatic Epilepsy Detection Using EEG Signals
    Qin, Hongshuai
    Deng, Bin
    Wang, Jiang
    Yi, Guosheng
    Wang, Ruofan
    Zhang, Zhen
    PROCEEDINGS OF THE 39TH CHINESE CONTROL CONFERENCE, 2020, : 7061 - 7066
  • [27] Deep Learning for Patient-Independent Epileptic Seizure Prediction Using Scalp EEG Signals
    Dissanayake, Theekshana
    Fernando, Tharindu
    Denman, Simon
    Sridharan, Sridha
    Fookes, Clinton
    IEEE SENSORS JOURNAL, 2021, 21 (07) : 9377 - 9388
  • [28] Semisupervised Seizure Prediction in Scalp EEG Using Consistency Regularization
    Liang, Deng
    Liu, Aiping
    Wu, Le
    Li, Chang
    Qian, Ruobing
    Ward, Rabab K.
    Chen, Xun
    JOURNAL OF HEALTHCARE ENGINEERING, 2022, 2022
  • [29] MFRC-Net: Multi-Scale Feature Residual Convolutional Neural Network for Motor Imagery Decoding
    Li, Xiao
    Yang, Zhuowei
    Tu, Xikai
    Wang, Jun
    Huang, Jian
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2025, 29 (01) : 224 - 234
  • [30] Seizure Prediction Using Multi-View Features and Improved Convolutional Gated Recurrent Network
    Tang, Lihan
    Xie, Ning
    Zhao, Menglian
    Wu, Xiaobo
    IEEE ACCESS, 2020, 8 : 172352 - 172361