Emerging bioelectrochemical technologies for biogas production and upgrading in cascading circular bioenergy systems

被引:27
作者
Ning, Xue [1 ,2 ]
Lin, Richen [1 ,2 ]
O'Shea, Richard [1 ,2 ]
Wall, David [1 ,2 ]
Deng, Chen [1 ,2 ]
Wu, Benteng [1 ,2 ]
Murphy, Jerry D. [1 ,2 ]
机构
[1] Univ Coll Cork, MaREI Ctr, Sch Engn, Environm Res Inst, Cork T23 XE10, Ireland
[2] Univ Coll Cork, Sch Engn & Architecture, Civil Struct & Environm Engn, Cork T23 XE10, Ireland
基金
爱尔兰科学基金会;
关键词
MICROBIAL ELECTROLYSIS CELLS; WASTE ACTIVATED-SLUDGE; ANAEROBIC CO-DIGESTION; POWER-TO-GAS; METHANE PRODUCTION; CARBON-DIOXIDE; GRASS-SILAGE; FOOD WASTE; BIOLOGICAL METHANATION; ENERGY;
D O I
10.1016/j.isci.2021.102998
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Biomethane is suggested as an advanced biofuel for the hard-to-abate sectors such as heavy transport. However, future systems that optimize the resource and production of biomethane have yet to be definitively defined. This paper assesses the opportunity of integrating anaerobic digestion (AD) with three emerging bioelectrochemical technologies in a circular cascading bioeconomy, including for power-to-gas AD (P2G-AD), microbial electrolysis cell AD (MEC-AD), and AD microbial electrosynthesis (AD-MES). The mass and energy flow of the three bioelectrochemical systems are compared with the conventional AD amine scrubber system depending on the availability of renewable electricity. An energy balance assessment indicates that P2G-AD, MEC- AD, and AD-MES circular cascading bioelectrochemical systems gain positive energy outputs by using electricity that would have been curtailed or constrained (equivalent to a primary energy factor of zero). This analysis of technological innovation, aids in the design of future cascading circular biosystems to produce sustainable advanced biofuels.
引用
收藏
页数:31
相关论文
共 139 条
[91]   Modelling of a power-to-gas system to predict the levelised cost of energy of an advanced renewable gaseous transport fuel [J].
McDonagh, Shane ;
O'Shea, Richard ;
Wall, David M. ;
Deane, J. P. ;
Murphy, Jerry D. .
APPLIED ENERGY, 2018, 215 :444-456
[92]  
McEniry J, 2013, IRISH J AGR FOOD RES, V52, P67
[93]   Domestic wastewater treatment in parallel with methane production in a microbial electrolysis cell [J].
Moreno, R. ;
San-Martin, M. I. ;
Escapa, A. ;
Moran, A. .
RENEWABLE ENERGY, 2016, 93 :442-448
[94]   Anaerobic digestion of food waste for bio-energy production in China and Southeast Asia: A review [J].
Negri, Camilla ;
Ricci, Marina ;
Zilio, Massimo ;
D'Imporzano, Giuliana ;
Qiao, Wei ;
Dong, Renjie ;
Adani, Fabrizio .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2020, 133
[95]   Bioelectrochemical CO2 Reduction to Methane: MES Integration in Biogas Production Processes [J].
Nelabhotla, Anirudh Bhanu Teja ;
Dinamarca, Carlos .
APPLIED SCIENCES-BASEL, 2019, 9 (06)
[96]   Microbial Electrosynthesis: Feeding Microbes Electricity To Convert Carbon Dioxide and Water to Multicarbon Extracellular Organic Compounds [J].
Nevin, Kelly P. ;
Woodard, Trevor L. ;
Franks, Ashley E. ;
Summers, Zarath M. ;
Lovley, Derek R. .
MBIO, 2010, 1 (02)
[97]   Biomethane production from anaerobic co-digestion at wastewater treatment plants: A critical review on development and innovations in biogas upgrading techniques [J].
Nguyen, Luong N. ;
Kumar, Jeevan ;
Vu, Minh T. ;
Mohammed, Johir A. H. ;
Pathak, Nirenkumar ;
Commault, Audrey S. ;
Sutherland, Donna ;
Zdarta, Jakub ;
Tyagi, Vinay Kumar ;
Nghiem, Long D. .
SCIENCE OF THE TOTAL ENVIRONMENT, 2021, 765
[98]   Bioelectrochemical enhancement of methane production from highly concentrated food waste in a combined anaerobic digester and microbial electrolysis cell [J].
Park, Jungyu ;
Lee, Beom ;
Tian, Donjie ;
Jun, Hangbae .
BIORESOURCE TECHNOLOGY, 2018, 247 :226-233
[99]   The hydrogen roadmap in the Portuguese energy system - Developing the P2G case [J].
Partidario, P. ;
Aguiar, R. ;
Martins, P. ;
Rangel, C. M. ;
Cabrita, I .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2020, 45 (47) :25646-25657
[100]   Coupling anaerobic digestion with gasification, pyrolysis or hydrothermal carbonization: A review [J].
Pecchi, Matteo ;
Baratieri, Marco .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2019, 105 :462-475